734 resultados para reperfusion
Resumo:
A major goal in the treatment of acute ischemia of a vascular territory is to restore blood flow to normal values, i.e. to "reperfuse" the ischemic vascular bed. However, reperfusion of ischemic tissues is associated with local and systemic leukocyte activation and trafficking, endothelial barrier dysfunction in postcapillary venules, enhanced production of inflammatory mediators and great lethality. This phenomenon has been referred to as "reperfusion injury" and several studies demonstrated that injury is dependent on neutrophil recruitment. Furthermore, ischemia and reperfusion injury is associated with the coordinated activation of a series of cytokines and adhesion molecules. Among the mediators of the inflammatory cascade released, TNF-alpha appears to play an essential role for the reperfusion-associated injury. On the other hand, the release of IL-10 modulates pro-inflammatory cytokine production and reperfusion-associated tissue injury. IL-1beta, PAF and bradykinin are mediators involved in ischemia and reperfusion injury by regulating the balance between TNF-alpha and IL-10 production. Strategies that enhance IL-10 and/or prevent TNF-alpha concentration may be useful as therapeutic adjuvants in the treatment of the tissue injury that follows ischemia and reperfusion.
Resumo:
BACKGROUND: During hibernation the kidney is in a hypothermic condition where renal blood flow is minimal and urine production is much reduced. Periodical arousal from hibernation is associated with kidney reperfusion at increasing body temperature, and restored urine production rate. METHODS: To assess the degree of structural preservation during such extreme conditions, the kidney cortex was investigated by means of electron microscopy in the dormouse Muscardinus avellanarius during winter hibernation, arousal from hibernation and the summer active period. RESULTS: Results show that the fine structure of the kidney cortex is well preserved during hibernation. In the renal corpuscle, a sign of slight lesion was the focal presence of oedematous endothelial cells and/or podocytes. Proximal convoluted tubule cells showed fully preserved ultrastructure and polarity, and hypertrophic apical endocytic apparatus. Structural changes were associated with increased plasma electrolytes, creatinine and urea nitrogen, and proteinuria. During the process of arousal the fine structure of the kidney cortex was also well maintained. CONCLUSION: These results demonstrate that dormice are able to fully preserve kidney cortex structure under extreme conditions resembling e.g. severe ischaemia or hypothermic organ storage for transplantation, and reperfusion. Elucidation of the mechanisms involved in such a natural model of organ preservation could be relevant to human medicine.
Resumo:
Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6h of reperfusion and peaking at 24h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.
Resumo:
BACKGROUND Renal ischemia/reperfusion (I/R) injury is manifested by acute renal failure (ARF) and acute tubular necrosis (ATN). The aim of this study was to evaluate the effectiveness of preconditioning with 3, 3, 5 triiodothyronine (T3) to prevent I/R renal injury. METHODOLOGY/PRINCIPAL FINDINGS THE RATS WERE DIVIDED INTO FOUR GROUPS: sham-operated, placebo-treated (SO-P), sham-operated T3- treated (SO- T3), I/R-injured placebo-treated (IR-P), and I/R-injured T3-treated (IR- T3) groups. At 24 h before ischemia, the animals received a single dose of T3 (100 μg/kg). Renal function and plasma, urinary, and tissue variables were studied at 4, 24, and 48 h of reperfusion, including biochemical, oxidative stress, and inflammation variables, PARP-1 immunohistochemical expression, and ATN morphology. In comparison to the SO groups, the IR-P groups had higher plasma urea and creatinine levels and greater proteinuria (at all reperfusion times) and also showed: increased oxidative stress-related plasma, urinary, and tissue variables; higher plasma levels of IL6 (proinflammatory cytokine); increased glomerular and tubular nuclear PARP-1 expression; and a greater degree of ATN. The IR-T3 group showed a marked reduction in all of these variables, especially at 48 h of reperfusion. No significant differences were observed between SO-P and SO-T3 groups. CONCLUSIONS This study demonstrates that preconditioning rats with a single dose of T3 improves the clinical signs and ATN of renal I/R injury. These beneficial effects are accompanied by reductions in oxidative stress, inflammation, and renal PARP-1 expression, indicating that this sequence of factors plays an important role in the ATN induced by I/R injury.
Resumo:
Most patients with symptomatic internal carotid artery occlusion have a single minor or major hemispheric stroke. A minority of patients have ipsilateral retinal ischemia, recurrent strokes, or transient ischemic attacks. Whereas spontaneous carotid recanalization is rare, acute surgical recanalization has been attempted, with mixed results. Recently, acute endovascular recanalization has been performed and described as feasible and relatively safe. We describe a patient with symptom recurrence related to hemodynamic factors after occlusion of the carotid artery who was successfully treated 14 days after symptom onset.
Resumo:
We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.
Resumo:
We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.
Resumo:
The role played by autophagy after ischemia/reperfusion (I/R) in the retina remains unknown. Our study investigated whether ischemic injury in the retina, which causes an energy crisis, would induce autophagy. Retinal ischemia was induced by elevation of the intraocular pressure and modulation of autophagic markers was analyzed at the protein levels in an early and late phase of recovery. Following retinal ischemia an increase in LC3BII was first observed in the early phase of recovery but did not stay until the late phase of recovery. Post-ischemic induction of autophagy by intravitreal rapamycin administration did not provide protection against the lesion induced by the ischemic stress. On the contrary, an increase in the number of apoptotic cells was observed following I/R in the rapamycin treated retinas.
Resumo:
BACKGROUND: New evidence shows that high density lipoproteins (HDL) have protective effects beyond their role in reverse cholesterol transport. Reconstituted HDL (rHDL) offer an attractive means of clinically exploiting these novel effects including cardioprotection against ischemia reperfusion injury (IRI). However, basic rHDL composition is limited to apolipoprotein AI (apoAI) and phospholipids; addition of bioactive compound may enhance its beneficial effects. OBJECTIVE: The aim of this study was to investigate the role of rHDL in post-ischemic model, and to analyze the potential impact of sphingosine-1-phosphate (S1P) in rHDL formulations. METHODS AND RESULTS: The impact of HDL on IRI was investigated using complementary in vivo, ex vivo and in vitro IRI models. Acute post-ischemic treatment with native HDL significantly reduced infarct size and cell death in the ex vivo, isolated heart (Langendorff) model and the in vivo model (-48%, p<0.01). Treatment with rHDL of basic formulation (apoAI + phospholipids) had a non-significant impact on cell death in vitro and on the infarct size ex vivo and in vivo. In contrast, rHDL containing S1P had a highly significant, protective influence ex vivo, and in vivo (-50%, p<0.01). This impact was comparable with the effects observed with native HDL. Pro-survival signaling proteins, Akt, STAT3 and ERK1/2 were similarly activated by HDL and rHDL containing S1P both in vitro (isolated cardiomyocytes) and in vivo. CONCLUSION: HDL afford protection against IRI in a clinically relevant model (post-ischemia). rHDL is significantly protective if supplemented with S1P. The protective impact of HDL appears to target directly the cardiomyocyte.
Resumo:
PURPOSE: The objective of this experiment is to establish a continuous postmortem circulation in the vascular system of porcine lungs and to evaluate the pulmonary distribution of the perfusate. This research is performed in the bigger scope of a revascularization project of Thiel embalmed specimens. This technique enables teaching anatomy, practicing surgical procedures and doing research under lifelike circumstances. METHODS: After cannulation of the pulmonary trunk and the left atrium, the vascular system was flushed with paraffinum perliquidum (PP) through a heart-lung machine. A continuous circulation was then established using red PP, during which perfusion parameters were measured. The distribution of contrast-containing PP in the pulmonary circulation was visualized on computed tomography. Finally, the amount of leak from the vascular system was calculated. RESULTS: A reperfusion of the vascular system was initiated for 37 min. The flow rate ranged between 80 and 130 ml/min throughout the experiment with acceptable perfusion pressures (range: 37-78 mm Hg). Computed tomography imaging and 3D reconstruction revealed a diffuse vascular distribution of PP and a decreasing vascularization ratio in cranial direction. A self-limiting leak (i.e. 66.8% of the circulating volume) towards the tracheobronchial tree due to vessel rupture was also measured. CONCLUSIONS: PP enables circulation in an isolated porcine lung model with an acceptable pressure-flow relationship resulting in an excellent recruitment of the vascular system. Despite these promising results, rupture of vessel walls may cause leaks. Further exploration of the perfusion capacities of PP in other organs is necessary. Eventually, this could lead to the development of reperfused Thiel embalmed human bodies, which have several applications.
Resumo:
Little information is currently available from the various societies of cardiology on primary percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI). Since primary PCI is the main method of reperfusion in AMI in many centres, and since of all cardiac emergencies AMI represents the most urgent situation for PCI, recommendations based on scientific evidence and expert experience would be useful for centres practising primary PCI, or those looking to establish a primary PCI programme. To this aim, a task force for primary PCI in AMI was formed to develop a set of recommendations to complement and assist clinical judgment. This paper represents the product of their recommendations.
Resumo:
Objective-Inflammation and proteolysis crucially contribute to myocardial ischemia and reperfusion injury. The extracellular matrix metalloproteinase inducer EMMPRIN (CD147) and its ligand cyclophilin A (CyPA) may be involved in both processes. The aim of the study was to characterize the role of the CD147 and CyPA interplay in myocardial ischemia/reperfusion (I/R) injury.Methods and Results-Immunohistochemistry showed enhanced expression of CD147 and CyPA in myocardial sections from human autopsies of patients who had died from acute myocardial infarction and from mice at 24 hours after I/R. At 24 hours and 7 days after I/R, the infarct size was reduced in CD147(+/-) mice vs CD147(+/+) mice (C57Bl/6), in mice (C57Bl/6) treated with monoclonal antibody anti-CD147 vs control monoclonal antibody, and in CyPA(-/-) mice vs CyPA(+/+) mice (129S6/SvEv), all of which are associated with reduced monocyte and neutrophil recruitment at 24 hours and with a preserved systolic function at 7 days. The combination of CyPA(-/-) mice with anti-CD147 treatment did not yield further protection compared with either inhibition strategy alone. In vitro, treatment with CyPA induced monocyte chemotaxis in a CD147-and phosphatidylinositol 3-kinase-dependent manner and induced monocyte rolling and adhesion to endothelium (human umbilical vein endothelial cells) under flow in a CD147-dependent manner.Conclusion-CD147 and its ligand CyPA are inflammatory mediators after myocardial ischemia and reperfusion and represent potential targets to prevent myocardial I/R injury.
Resumo:
Ischemia/reperfusion (I/R) is a pivotal mechanism of liver damage after liver transplantation or hepatic surgery. We have investigated the effects of cannabidiol (CBD), the nonpsychotropic constituent of marijuana, in a mouse model of hepatic I/R injury. I/R triggered time-dependent increases/changes in markers of liver injury (serum transaminases), hepatic oxidative/nitrative stress (4-hydroxy-2-nonenal, nitrotyrosine content/staining, and gp91phox and inducible nitric oxide synthase mRNA), mitochondrial dysfunction (decreased complex I activity), inflammation (tumor necrosis factor α (TNF-α), cyclooxygenase 2, macrophage inflammatory protein-1α/2, intercellular adhesion molecule 1 mRNA levels; tissue neutrophil infiltration; nuclear factor κB (NF-κB) activation), stress signaling (p38MAPK and JNK), and cell death (DNA fragmentation, PARP activity, and TUNEL). CBD significantly reduced the extent of liver inflammation, oxidative/nitrative stress, and cell death and also attenuated the bacterial endotoxin-triggered NF-κB activation and TNF-α production in isolated Kupffer cells, likewise the adhesion molecule expression in primary human liver sinusoidal endothelial cells stimulated with TNF-α and attachment of human neutrophils to the activated endothelium. These protective effects were preserved in CB(2) knockout mice and were not prevented by CB(1/2) antagonists in vitro. Thus, CBD may represent a novel, protective strategy against I/R injury by attenuating key inflammatory pathways and oxidative/nitrative tissue injury, independent of classical CB(1/2) receptors.
Resumo:
Training has been shown to induce cardioprotection. The mechanisms involved remain still poorly understood. Aims of the study were to examine the relevance of training intensity on myocardial protection against ischemia/reperfusion (I/R) injury, and to which extent the beneficial effects persist after training cessation in rats. Sprague-Dawley rats trained at either low (60% [Formula: see text]) or high (80% [Formula: see text]) intensity for 10 weeks. An additional group of highly trained rats was detrained for 4 weeks. Untrained rats served as controls. At the end of treatment, rats of all groups were split into two subgroups. In the former, rats underwent left anterior descending artery (LAD) ligature for 30 min, followed by 90-min reperfusion, with subsequent measurement of the infarct size. In the latter, biopsies were taken to measure heat-shock proteins (HSP) 70/72, vascular endothelial growth factor (VEGF) protein levels, and superoxide dismutase (SOD) activity. Training reduced infarct size proportionally to training intensity. With detraining, infarct size increased compared to highly trained rats, maintaining some cardioprotection with respect to controls. Cardioprotection was proportional to training intensity and related to HSP70/72 upregulation and Mn-SOD activity. The relationship with Mn-SOD was lost with detraining. VEGF protein expression was not affected by either training or detraining. Stress proteins and antioxidant defenses might be involved in the beneficial effects of long-term training as a function of training intensity, while HSP70 may be one of the factors accounting for the partial persistence of myocardial protection against I/R injury in detrained rats.
Resumo:
In solid organ transplantation, ischemia/reperfusion (IR) injury during organ procurement, storage and reperfusion is an unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated protein kinase (MAPK) signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK), extracellular signal- regulated kinase-1/2 (ERK1/2), p38 MAPK, and big MAPK-1 (BMK1/ERK5). Here, we review the role of MAPK activation during myocardial IR injury as it occurs during heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases, but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new storage solutions, and gentle reperfusion.