979 resultados para renal effects


Relevância:

70.00% 70.00%

Publicador:

Resumo:

INTRODUCTION AND AIMS: Hypertension is a common side effect of recombinant human erythropoietin (rHuEPO) therapy; however, the exact pathways remain to be elucidated. The discovery of non-hematopoietic actions of rHuEPO increased the number of patients that could putatively benefit from this therapy; however, to achieve those effects higher doses are usually needed, which increase the risk and incidence of adverse events. Our aim was to study the effect of a broad range of rHuEPO doses on hematological and biochemical parameters, blood pressure and renal function and damage in the rat, focusing on endothelial nitric oxide synthase (eNOS) and hypoxia-inducible factors (HIFs). METHODS: Male Wistar rats were divided in 5 groups receiving different doses of rHuEPO (100, 200, 400 and 600 IU/kg body weight (BW)/week) and saline solution (control), during 3 weeks. Blood and 24h urine were collected to perform hematological and biochemical analysis. Blood pressure (BP) was measured by the tail-cuff method. The kidney tissue was collected to mRNA and protein expression assays and to characterize renal lesions. RESULTS: A dose-dependent increase in red blood cells count, hematocrit and hemoglobin levels was found with rHuEPO therapy, in rHuEPO200, rHuEPO400 and rHuEPO600 groups. Increased reticulocyte count was found in the rHuEPO400 and rHuEPO600 groups. BP raised in all groups receiving rHuEPO. The rHuEPO200 and rHuEPO600 groups presented increased kidney protein levels of HIF2α and a reduction in kidney protein levels of eNOS, along with the highest grade of vascular and tubular renal lesions. CONCLUSIONS: Our study showed that rHuEPO-induced hypertension might involve indirect (hematological) and direct (renal) effects which varies according to the dose used. Thus, rHuEPO therapy should be performed rationally and under adequate surveillance, as hypertension develops even with lower doses. Especial caution with higher doses should be taken, as rHuEPO-induced hypertension leads to early renal damage without alterations in traditional markers of renal function, thus masking the serious adverse effects and risks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years, an increasing percentage of people from industrialized countries have been using complementary and alternative medicines (CAM). This, combined with numerous warnings regarding the potential toxicity of these therapies, suggests the need for practitioners to keep abreast of the reported incidence of renal toxicity caused by the ingestion of medicinal herbs. The goal of the present two-part series, on the toxic or beneficial effects of medicinal herbs on renal health, is to provide practitioners with a summary of the most recent information as well as the means by which evidence for benefit or toxicity has been found. In this first article, we explore in vivo evidence of toxicity. Included are nephrotoxicity from aristolochic acid and other components within herbs, herb-drug interactions resulting in adverse renal effects, and renal toxicity from contaminants within the extracts. The review aims to provide a guide to encourage future toxicity studies and rigorous clinical trials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La thérapie cellulaire est une avenue pleine de promesses pour la régénération myocardique, par le remplacement du tissu nécrosé, ou en prévenant l'apoptose du myocarde survivant, ou encore par l'amélioration de la néovascularisation. Les cellules souches de la moelle osseuse (CSMO) expriment des marqueurs cardiaques in vitro quand elles sont exposées à des inducteurs. Pour cette raison, elles ont été utilisées dans la thérapie cellulaire de l'infarctus au myocarde dans des études pre-cliniques et cliniques. Récemment, il a été soulevé de possibles effets bénéfiques de l'ocytocine (OT) lors d’infarctus. Ainsi, l’OT est un inducteur de différenciation cardiaque des cellules souches embryonnaires, et cette différenciation est véhiculée par la voie de signalisation du monoxyde d’azote (NO)-guanylyl cyclase soluble. Toutefois, des données pharmacocinétiques de l’OT lui attribue un profil non linéaire et celui-ci pourrait expliquer les effets pharmacodynamiques controversés, rapportés dans la lttérature. Les objectifs de ce programme doctoral étaient les suivants : 1) Caractériser le profil pharmacocinétique de différents schémas posologiques d'OT chez le porc, en développant une modélisation pharmacocinétique / pharmacodynamique plus adaptée à intégrer les effets biologiques (rénaux, cardiovasculaires) observés. 2) Isoler, différencier et trouver le temps optimal d’induction de la différenciation pour les CSMO porcines (CSMOp), sur la base de l'expression des facteurs de transcription et des protéines structurales cardiaques retrouvées aux différents passages. 3) Induire et quantifier la différenciation cardiaque par l’OT sur les CSMOp. 4) Vérifier le rôle du NO dans cette différenciation cardiaque sur les CSMOp. Nous avons constaté que le profil pharmacocinétique de l’OT est mieux expliqué par le modèle connu comme target-mediated drug disposition (TMDD), parce que la durée du séjour de l’OT dans l’organisme dépend de sa capacité de liaison à son récepteur, ainsi que de son élimination (métabolisme). D'ailleurs, nous avons constaté que la différenciation cardiomyogénique des CSMOp médiée par l’OT devrait être induite pendant les premiers passages, parce que le nombre de passages modifie le profile phénotypique des CSMOp, ainsi que leur potentiel de différenciation. Nous avons observé que l’OT est un inducteur de la différenciation cardiomyogénique des CSMOp, parce que les cellules induites par l’OT expriment des marqueurs cardiaques, et l'expression de protéines cardiaques spécifiques a été plus abondante dans les cellules traitées à l’OT en comparaison aux cellules traitées avec la 5-azacytidine, qui a été largement utilisée comme inducteur de différenciation cardiaque des cellules souches adultes. Aussi, l’OT a causé la prolifération des CMSOp. Finalement, nous avons observé que l'inhibition de la voie de signalisation du NO affecte de manière significative l'expression des protéines cardiaques spécifiques. En conclusion, ces études précisent un potentiel certain de l’OT dans le cadre de la thérapie cellulaire cardiomyogénique à base de cellules souches adultes, mais soulignent que son utilisation requerra de la prudence et un approfondissement des connaissances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

JUSTIFICATIVA E OBJETIVOS: Não existem estudos que relatem as repercussões renais determinadas pela injeção de doses elevadas de clonidina no espaço peridural. O objetivo do estudo foi avaliar os efeitos hemodinâmicos e renais determinados pela injeção de doses elevadas de clonidina no espaço peridural do cão. MÉTODO: Vinte animais anestesiados com tiopental sódico e fentanil foram distribuídos aleatoriamente e de forma duplamente encoberta em dois grupos: Grupo 1 ou placebo (n = 10), que recebeu 0,2 mL.kg-1 de solução fisiológica, e Grupo 2 ou clonidina (n = 10), que recebeu 0,2 mL.kg-1 de uma solução contendo 50 µg.mL-1 de clonidina, no espaço peridural. Foram avaliados os seguintes parâmetros hemodinâmicos: freqüência cardíaca (FC): bat.min-1; pressão arterial média (PAM): mmHg; pressão da artéria pulmonar ocluida (PAOP): mmHg; débito cardíaco (DC): L.min-1; volume sistólico (VS): mL; também, os seguintes parâmetros da função renal foram avaliados: fluxo sangüíneo renal (FSR): mL.min-1; resistência vascular renal (RVR): mmHg.mL-1.min; volume urinário minuto (VUM): mL.min-1; depuração de creatinina (D Cr): mL.min-1; depuração de para-aminohipurato (D PAH): mL.min-1; fração de filtração (FF); depuração de sódio (D Na): mL.min-1; depuração de potássio (D K): mL.min-1; excreção fracionária de sódio (EF Na): %; excreção urinária de sódio (U NaV): µEq.min-1; excreção urinária de potássio (U K V): µEq.min-1. O experimento consistiu em três momentos de 20 minutos cada. Os dados foram coletados aos 10 minutos de cada momento e a diurese, no início e no final de cada momento. Ao término de M1, a clonidina ou a solução fisiológica foi administrada no espaço peridural. Após período de 20 minutos iniciou-se M2 e, em seguida, M3. RESULTADOS: A clonidina na dose de 10 µg.kg-1 no espaço peridural do cão promoveu alterações significativas, com diminuições da freqüência cardíaca e do débito cardíaco e aumento da relação depuração de para-aminohipurato de sódio/débito cardíaco. CONCLUSÕES: Nas condições realizadas e nas doses empregadas, pode-se concluir que a clonidina não promoveu alteração da função renal, mas diminuiu valores hemodinâmicos (freqüência e débito cardíaco).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Objectives - Allopurinol is a drug which inhibits the formation of noxious renal free radicals. The aim of this study was to evaluate the protecting renal effects of allopurinol in ischemic kidneys of dogs. Methods - Sixteen dogs were anesthetized with sodium pentobarbital and submitted to extracellular volume expansion (1.4 ml.kg-1.min-1), to mechanic ventilation with air, to right nephrectomy and to left renal artery clamping. Changes which might occur in renal morphology and function after 30 min of total ischemia and posterior reperfusion were studied in Group 1 (G1), in addition to the action of allopurinol (50 mg.kg-1) on those kidneys, when administered 24 h before the experiment and 1 h before the ischemic procedure in Group 2 (G2). The following parameters: heart rate, inferior vena cava pressure, mean blood pressure, PAH clearance (PAH(c)), renal blood flow (RBF), renal vascular resistance (RVR), creatinine clearance (Cr(c)), filtration fraction, urine output, plasma and urine osmolality, osmolar clearance, free water, sodium and potassium clearance, urine and fractional sodium and potassium excretion, hematocrit, rectal temperature, and left kidney histology were evaluated in four moments: M1 control, and M2, M3, M4 obtained immediately, 15 and 30 min after unclamping of the left renal artery. In G2, M1, M2, M3 and M4 were obtained 45, 90, 105, and 120 min after the second allopurinol dose. Results - Both groups showed the highest values for PAH(c), RBF, and Cr(c), and the lowest values for RVR in M1. Animals were tachycardiac since the beginning of the experiment both in G1 and in G2. The other parameters were not changed. Left kidney histological evaluation showed alterations compatible with acute tubular necrosis in both experimental groups. Conclusions - Alterations found in renal hemodynamics were compatible with the release of vasoconstrictor substances due to renal ischemia. Allopurinol was not effective in preventing renal alterations caused by ischemia and reperfusion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: This research was performed with the objective of investigating the renal effects on premature newborn infants of fortifying banked donor human milk. Methods: Clinical intervention trial, of the before-and-after type, involving 28 premature newborn infants split into two groups by postconceptional age at the start of the study: GI < 34 weeks (n = 14) and GII ≥ 34 weeks (n = 14), and assessed at three sample points: S1, on unfortified donor human milk, S2, after 3 days, and S3, after 10-13 days on fortified donor human milk. Nutrient intake, weight gain, fractional sodium excretion, urinary osmolality and specific density were compared with two-way ANOVA for repeated measures. Results: Fluids, energy and sodium intakes were similar for both groups, and weight gain was satisfactory. Among the preterms with < 34 weeks postconceptional age, serum sodium was lower at the end of the study and the fractional sodium excretion was elevated at the start and at the end of the study (S1 = 2.11±1.05; S2 = 1.25±0.64; S3 = 1.62±0.88), with a significant difference in relation to GII (S1 = 1.34±0.94; S2 = 0.90±0.54; S3 = 0.91±0.82). Osmolality and urinary specific density were normal, with no differences between groups or collection dates. Conclusions: No adverse effects on the renal function of these preterms were detected as a result of being fed fortified donor human milk. Copyright © 2006 by Sociedade Brasileira de Pediatria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dopamine is an endogenous compound widely used in intensive care. It has a broad spectrum of action, on the cardiovascular system and urinary tract. Increased glomerular filtration rate, renal blood flow and fractional excretion of sodium and phosphorus are expected renal effects in normal individuals, but are poorly explored in veterinary medicine. This study was conducted to evaluate the glomerular function of dogs with renal disease submitted to continuous infusion of dopamine. Different doses of dopamine were administered in healthy and nephropathic dogs. Laboratory evaluations of creatinine clearance and urinary protein/creatinine ratio were performed during and after treatments. Creatinine clearance showed dose-dependent increase in healthy dogs. In dogs with renal disease, the dose of 1μg/kg/min GFR increased slightly, without changing the urine P/C and blood pressure, while the dose of 3μg/kg/min increased urinary protein excretion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Central α2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α2-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α2-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Central α2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α2-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α2-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

VEGF inhibition can promote renal vascular and parenchymal injury, causing proteinuria, hypertension and thrombotic microangiopathy. The mechanisms underlying these side effects are unclear. We investigated the renal effects of the administration, during 45 days, of sunitinib (Su), a VEGF receptor inhibitor, to rats with 5/6 renal ablation (Nx). Adult male Munich-Wistar rats were distributed among groups S+V, sham-operated rats receiving vehicle only; S+Su, S rats given Su, 4 mg/kg/day; Nx+V, Nx rats receiving V; and Nx+Su, Nx rats receiving Su. Su caused no change in Group S. Seven and 45 days after renal ablation, renal cortical interstitium was expanded, in association with rarefaction of peritubular capillaries. Su did not worsen hypertension, proteinuria or interstitial expansion, nor did it affect capillary rarefaction, suggesting little angiogenic activity in this model. Nx animals exhibited glomerulosclerosis (GS), which was aggravated by Su. This effect could not be explained by podocyte damage, nor could it be ascribed to tuft hypertrophy or hyperplasia. GS may have derived from organization of capillary microthrombi, frequently observed in Group Nx+Su. Treatment with Su did not reduce the fractional glomerular endothelial area, suggesting functional rather than structural cell injury. Chronic VEGF inhibition has little effect on normal rats, but can affect glomerular endothelium when renal damage is already present.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current therapy of septic/vasodilatory cardiovascular failure includes volume resuscitation and infusion of inotropic and vasopressor agents. Norepinephrine is the first-line vasoconstrictor, and can stabilize hemodynamic variables in most patients. Nonetheless, irreversible cardiovascular failure which is resistant to conventional hemodynamic therapies still is the main cause of death in patients with severe sepsis and septic shock. In such advanced, catecholamine-resistant shock states, arginine-vasopressin (AVP) has repeatedly caused an increase in mean arterial blood pressure, a decrease in toxic norepinephrine-dosages, as well as further beneficial hemodynamic, endocrinologic and renal effects. Although AVP exerted negative inotropic effects in previous clinical trials and in selected animal experiments, a continuous low-dose AVP infusion during advanced septic/vasodilatory shock caused a decrease in cardiac index only in patients with a hyperdynamic circulation. Adverse effects on gastrointestinal circulation and the systemic microcirculation can not be excluded, but have not yet been confirmed in clinical prospective trials. Negative side effects of a supplementary AVP therapy are an increase in total bilirubin concentrations, and a decrease in platelet count. A transient increase in hepatic transaminases during AVP infusion is most likely related to preceding hypotensive episodes. Important points which must be considered when using AVP as a "rescue vasopressor" in septic/vasodilatory shock states are: 1) AVP infusion only in advanced shock states that can not be adequately reversed by conventional hemodynamic therapy (e.g. norepinephrine >0,5-0,6 mug/kg/min), 2) presence of normovolemia, 3) AVP infusion only in combination with norepinephrine, 4) strict avoidance of bolus injections and dosages >4 IU/h. Effects of a supplementary AVP infusion in advanced vasodilatory shock on survival are currently examined in a large, prospective multicenter trial in North America and Australia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Standard therapy forms the basic foundation for care of dogs with glomerular disease, as it is herein recommended for use in all affected animals regardless of causation of the disease. Consensus recommendations target the evaluation and management of proteinuria, inhibition of the renin-angiotensin-aldosterone system, modification in dietary intake with special consideration for those nutrients with renal effects, diagnosis and treatment of systemic hypertension, and evaluation and management of body fluid volume status in dogs with glomerular disease.