490 resultados para relatedness
Resumo:
Except for the meat- and egg-type strains used in commercial poultry farms in Brazil, there are no scientific reports about the origin of birds from the genus Gallus that have been introduced in this country with domestication or fighting purposes. Therefore, the aim of this study was to identify the position of the Brazilian Game Bird in the phylogenetic tree of the genus Gallus by nucleotide sequence analysis of the mitochondrial DNA D-loop region. The results indicate that fighting roosters comprise two different clusters within the species Gallus gallus domesticus. One of the clusters is related to the wild ancestors, while the other one is more related to the birds raised by the poultry industry. In conclusion, Brazilian fighting roosters have originated from the red jungle fowl (Gallus gallus) and belong to the subspecies Gallus gallus domesticus.
Resumo:
The aim of this study is to describe the degree of yeast-colonization in diabetic and hemodialysed-users of dental prostheses. Individuals (306) were examined using an oral rinse technique in order to evaluate the incidence of yeast-carriage, and genotype of C. albicans. Yeasts were isolated from 68.4% (91/133) individual's dental prostheses users. Dental prostheses were found to be a significant factor for the yeast colonization (P < 0.05). Overall, the intensity of carriage was higher in diabetic patients as compared with health and hemodialysed individuals (P < 0.05). The isolation rates were: C. albicans (51.7%), C. parapsilosis (20.9%), C. tropicalis (14.3%), C. glabrata (6.6%), C. krusei (3.3%), C. rugosa (1.1%), and Pichia (Pichia ohmeri, 2.2%). Ready-To-Go RAPD Analysis Beads were used and primer OPJ 6 distinguished the C. albicans isolates found in prostheses users. All the isolates were grouped into 11 RAPD profiles in four main clusters and, the average S (AB) for the entire collection of 47 C. albicans isolates were 0.779 +/- 0.178. Over 85% of isolates had a similarity level higher than or equal to 0.8 reinforcing the idea that the use of dental prostheses, independently of the host's clinical condition, probably provides the necessary conditions for these strains to gain a growth-specific advantage over others.
Resumo:
Haematobia irritans is a hematophagous parasite of cattle that causes significant economic losses in many parts of the world, including Brazil. In the present work, one American and four Brazilian populations of this species were studied by Random Amplified Polymorpht DNA (RAPD) to assess basically genetic variability within and between populations. Ten different decamer random primers were employed in the genomic DNA amplification, yielding 117 fragments in the five H.. irritans populations. In Drosophila prosaltans, used as an outgroup, 81 fragments were produced. Forty-three of these fragments were shared by both species. Among the H. irritans samples, that from Rio Branco (Acre State, Brazil) produced the smallest numbers of fragments and polymorphic bands. This high genetic homogenity may be ascribed to its geographic origin (in the Northwest of Brazil), which causes high isolation and low gene flow, unlike the other Brazilian populations, from the South Central region, in which cattle trade is very intensive. Marker fragments (exclusive bands) detected in every sample enabled the population origin to be characterized, but they are also potentially useful for further approaches such as the putative origin of Brazilian populations from North America. Similarity indices [Nei & Li, 1979, Proc. Natl. Acad. Sci. USA 76: 5269-5273] and phylogenetic trees, rooted by using the outgroup and produced by the Phylogenetic Analysis using Parsimony (PAUP 4.0-Swofford, 2001) program showed the closest relationships between flies from Sao Jose do Rio Preto and Turiuba (both from São Paulo State, Brazil) while flies from the geographically distant Rio Branco showed the greatest differentiation relative to the others.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Despite the extensive polymorphism at the merozoite surface protein-1 (MSP-1) locus of Plasmodium falciparum, that encodes a major repetitive malaria vaccine candidate antigen, identical and nearly identical alleles frequently occur in sympatric parasites. Here we used microsatellite haplotyping to estimate the genetic distance between isolates carrying identical and nearly identical MSP-1 alleles. Methods: We analyzed 28 isolates from hypoendemic areas in north-western Brazil, collected between 1985 and 1998, and 23 isolates obtained in mesoendemic southern Vietnam in 1996. MSP-1 alleles were characterized by combining PCR typing with allele-specific primers and partial DNA sequencing. The following single-copy microsatellite markers were typed: Polyα, TA42 (only for Brazilian samples), TA81, TA1, TA87, TA109 (only for Brazilian samples), 2490, ARAII, PfG377, PfPK2, and TA60. Results: The low pair-wise average genetic distance between microsatellite haplotypes of isolates sharing identical MSP-1 alleles indicates that epidemic propagation of discrete parasite clones originated most identical MSP-1 alleles in parasite populations from Brazil and Vietnam. At least one epidemic clone propagating in Brazil remained relatively unchanged over more than one decade. Moreover, we found no evidence that rearrangements of MSP-1 repeats, putatively created by mitotic recombination events, generated new alleles within clonal lineages of parasites in either country. Conclusion: Identical MSP-1 alleles originated from co-ancestry in both populations, whereas nearly identical MSP-1 alleles have probably appeared independently in unrelated parasite lineages.
Resumo:
The prawn genus Macrobrachium belongs to the family Palaemonidae. Its species are widely distributed in lakes, reservoirs, floodplains, and rivers in tropical and subtropical regions of South America. Globally, the genus Macrobrachium includes nearly 210 known species, many of which have economic and ecological importance. We analyzed three species of this genus (M. jelskii, M. amazonicum and M. brasiliense) using RAPD-PCR to assess their genetic variability, genetic structure and the phylogenetic relationship between them and to look for molecular markers that enable separation of M. jelskii and M. amazonicum, which are closely related syntopic species. Ten different random decamer primers were used for DNA amplification, yielding 182 fragments. Three of these fragments were monomorphic and exclusive to M. amazonicum or M. jelskii and can be used as specific molecular markers to identify and separate these two species. Similarity indices and a phylogenetic tree showed that M. amazonicum and M. jelskii are closest to each other, while M. brasiliense was the most differentiated species among them; this may be attributed to the different habitat conditions to which these species have been submitted. This information will be useful for further studies on these important crustacean species.
Resumo:
The major aim of this study was to evaluate the inbreeding (F), average relatedness coefficient (AR) and effective population size (Ne) in the Jaffarabadi buffalo breed from Brazil. Pedigree information of 1,272 animals born from 1966 was used. The effective population size was calculated in two ways: first, computed via individual increase in inbreeding and second estimated by individual increase in coancestry. The known generation numbers were 1.24, 1.76 and 2.64 for complete, equivalent and maximum generation, respectively. The effective size computed via individual increase in coancestry was small with a value of 10.82 +/- 1.29. The effective size computed by individual increase in inbreeding (10.40 +/- 3.69) was very similar but a little smaller than the previous reported value. The average values of F and AR for the population reference (1,059) were 4.22 and 12.5 percent. The mean of F for inbred animals (319) was 14.0%. The F and AR means were 5.7 and 13.3% for animals with at least 1.5 known equivalent generation and 9.3 and 15.97% for individuals having at least 2.5 equivalent generations known. It was found 78 matings between half sibs (6.14%) and 67 matings (5.27%) between parent-offspring. The estimated inbreeding increase per generation by considering maximum generation, complete generation and equivalent generation were 1.21%, 5.18% and 3.57%, respectively. Considering the uncompleted pedigree, the estimated inbreeding for the reference population could be underestimated.
Resumo:
Methods based on genetic markers to estimate the coefficient of heritability in natural populations are important to understand the effects of natural selection on inheritance of quantitative traits. The objective of this study was to investigate the genetic control of the trait plant height in a fragmented population of Araucaria angustifolia. This study was conducted in a forest fragment of 5.4 ha of area, located in the State of Parana, Brazil. Estimates of heritability were performed using data from genotypes and height of regenerating individuals of the population. Four methods to estimate the relatedness between pairs of individuals (RITLAND, 1996; LYNCH; RITLAND, 1999; QUELLER; GOODNIGHT, 1989; WANG, 2002) for three distances (without criteria, 25 and 50 m) were used. The coefficient of heritability estimated using the estimator of relatedness of Ritland (1996), suggest that the genetic control of the trait height is low in the regeneration, thus the natural selection as well as the artificial selection have a low potential to change the mean of the population. The estimates based on the other methods to calculate the relatedness presented low precision, indication that these methods are not adequate for the data used.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Abstract Background Despite the extensive polymorphism at the merozoite surface protein-1 (MSP-1) locus of Plasmodium falciparum, that encodes a major repetitive malaria vaccine candidate antigen, identical and nearly identical alleles frequently occur in sympatric parasites. Here we used microsatellite haplotyping to estimate the genetic distance between isolates carrying identical and nearly identical MSP-1 alleles. Methods We analyzed 28 isolates from hypoendemic areas in north-western Brazil, collected between 1985 and 1998, and 23 isolates obtained in mesoendemic southern Vietnam in 1996. MSP-1 alleles were characterized by combining PCR typing with allele-specific primers and partial DNA sequencing. The following single-copy microsatellite markers were typed : Polyα, TA42 (only for Brazilian samples), TA81, TA1, TA87, TA109 (only for Brazilian samples), 2490, ARAII, PfG377, PfPK2, and TA60. Results The low pair-wise average genetic distance between microsatellite haplotypes of isolates sharing identical MSP-1 alleles indicates that epidemic propagation of discrete parasite clones originated most identical MSP-1 alleles in parasite populations from Brazil and Vietnam. At least one epidemic clone propagating in Brazil remained relatively unchanged over more than one decade. Moreover, we found no evidence that rearrangements of MSP-1 repeats, putatively created by mitotic recombination events, generated new alleles within clonal lineages of parasites in either country. Conclusion Identical MSP-1 alleles originated from co-ancestry in both populations, whereas nearly identical MSP-1 alleles have probably appeared independently in unrelated parasite lineages.
Resumo:
The genus Campylobacter comprises 17 species, some of which are important animal and human pathogens. To gain more insight into the genetic relatedness of this genus and to improve the molecular tools available for diagnosis, a universal sequencing approach was established for the gene encoding the beta-subunit of RNA polymerase (rpoB) for the genus Campylobacter. A total of 59 strains, including the type strains of currently recognized species as well as field isolates, were investigated in the study. A primer set specific for Campylobacter species enabled straightforward amplification and sequencing of a 530 bp fragment of the rpoB gene. The 16S rRNA gene sequences of all of the strains were determined in parallel. A good congruence was obtained between 16S rRNA and rpoB gene sequence-based trees within the genus Campylobacter. The branching of the rpoB tree was similar to that of the 16S rRNA gene tree, even though a few discrepancies were observed for certain species. The resolution of the rpoB gene within the genus Campylobacter was generally much higher than that of the 16S rRNA gene sequence, resulting in a clear separation of most species and even some subspecies. The universally applicable amplification and sequencing approach for partial rpoB gene sequence determination provides a powerful tool for DNA sequence-based discrimination of Campylobacter species.