404 resultados para regularization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the properties of the gravitational energy-momentum 3-form within the tetrad formulation of general relativity theory. We derive the covariance properties of the quantities describing the energy-momentum content under Lorentz transformations of the tetrad. As an application, we consider the computation of the total energy (mass) of some exact solutions of Einstein's general relativity theory which describe compact sources with asymptotically flat spacetime geometry. As it is known, depending on the choice of tetrad frame, the formal total integral for such configurations may diverge. We propose a natural regularization method which yields finite values for the total energy-momentum of the system and demonstrate how it works on a number of explicit examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a simplest case we employ dimensional regularization method in order to evaluate the contribution of two pion exchanges to the NN interaction. The method allows one to treat the infinities of scattering amplitude in a way consistent with the symmetries of the theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional cutoff regularization schemes of the Nambu-Jona-Lasinio model limit the applicability of the model to energy-momentum scales much below the value of the regularizing cutoff. In particular, the model cannot be used to study quark matter with Fermi momenta larger than the cutoff. In the present work, an extension of the model to high temperatures and densities recently proposed by Casalbuoni, Gatto, Nardulli, and Ruggieri is used in connection with an implicit regularization scheme. This is done by making use of scaling relations of the divergent one-loop integrals that relate these integrals at different energy-momentum scales. Fixing the pion decay constant at the chiral symmetry breaking scale in the vacuum, the scaling relations predict a running coupling constant that decreases as the regularization scale increases, implementing in a schematic way the property of asymptotic freedom of quantum chromodynamics. If the regularization scale is allowed to increase with density and temperature, the coupling will decrease with density and temperature, extending in this way the applicability of the model to high densities and temperatures. These results are obtained without specifying an explicit regularization. As an illustration of the formalism, numerical results are obtained for the finite density and finite temperature quark condensate and applied to the problem of color superconductivity at high quark densities and finite temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the regularization ambiguities in an exact renormalized (1 + 1)-dimensional field theory. We show a relation between the regularization ambiguities and the coupling parameters of the theory as well as their role in the implementation of a local gauge symmetry at quantum level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we argue that there is no ambiguity between the Pauli-Villars and other methods of regularization in (2+1)-dimensional quantum electrodynamics with respect to dynamical mass generation, provided we properly choose the couplings for the regulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Singular perturbations problems in dimension three which are approximations of discontinuous vector fields are studied in this paper. The main result states that the regularization process developed by Sotomayor and Teixeira produces a singular problem for which the discontinuous set is a center manifold. Moreover, the definition of' sliding vector field coincides with the reduced problem of the corresponding singular problem for a class of vector fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we consider the two-point Green's functions in (1 + 1)-dimensional quantum electrodynamics and show that the correct implementation of analytic regularization gives a gauge invariant result for the vacuum polarization amplitude and the correct coefficient for the axial anomaly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classification of the regularization ambiguity of a 2D fermionic determinant in three different classes according to the number of second-class constraints, including the new Faddeevian regularization, is examined and extended. We find a new and important result that the Faddeevian class, with three second-class constraints, possesses a free continuous one parameter family of elements. The criterion of unitarity restricts the parameter to the same range found earlier by Jackiw and Rajaraman for the two-constraint class. We studied the restriction imposed by the interference of right-left modes of the chiral Schwinger model (χQED2) using Stone's soldering formalism. The interference effects between right and left movers, producing the massive vectorial photon, are shown to constrain the regularization parameter to belong to the four-constraint class which is the only nonambiguous class with a unique regularization parameter. ©1999 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variational inequality problem (VIP) satisfying a constraint qualification can be reduced to a mixed complementarity problem (MCP). Monotonicity of the VIP implies that the MCP is also monotone. Introducing regularizing perturbations, a sequence of strictly monotone mixed complementarity problems is generated. It is shown that, if the original problem is solvable, the sequence of computable inexact solutions of the strictly monotone MCP's is bounded and every accumulation point is a solution. Under an additional condition on the precision used for solving each subproblem, the sequence converges to the minimum norm solution of the MCP. Copyright © 2000 by Marcel Dekker, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use dimensional regularization (DR) to evaluate a one-loop four-point function to order g2 in a scalar φ4 model using the light-front coordinates and performing the light-front energy variable integration in the first place. The DR in the light-front is applied to the D - 2 transverse variables. We show the equivalence of the result thus obtained with the standard DR applied to D dimensions. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: In this work we are concerned with the existence and uniqueness of T -periodic weak solutions for an initial-boundary value problem associated with nonlinear telegraph equations typein a domain. Our arguments rely on elliptic regularization technics, tools from classical functional analysis as well as basic results from theory of monotone operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] In this paper we present a method for the regularization of 3D cylindrical surfaces. By a cylindrical surface we mean a 3D surface that can be expressed as an application S(l; µ) ! R3 , where (l; µ) represents a cylindrical parametrization of the 3D surface. We built an initial cylindrical parametrization of the surface. We propose a new method to regularize such cylindrical surface. This method takes into account the information supplied by the disparity maps computed between pair of images to constraint the regularization of the set of 3D points. We propose a model based on an energy which is composed of two terms: an attachment term that minimizes the difference between the image coordinates and the disparity maps and a second term that enables a regularization by means of anisotropic diffusion. One interesting advantage of this approach is that we regularize the 3D surface by using a bi-dimensional minimization problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]The aim of this work is to study several strategies for the preservation of flow discontinuities in variational optical flow methods. We analyze the combination of robust functionals and diffusion tensors in the smoothness assumption. Our study includes the use of tensors based on decreasing functions, which has shown to provide good results. However, it presents several limitations and usually does not perform better than other basic approaches. It typically introduces instabilities in the computed motion fields in the form of independent \textit{blobs} of vectors with large magnitude...