479 resultados para regularization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper introduces an efficient construction algorithm for obtaining sparse linear-in-the-weights regression models based on an approach of directly optimizing model generalization capability. This is achieved by utilizing the delete-1 cross validation concept and the associated leave-one-out test error also known as the predicted residual sums of squares (PRESS) statistic, without resorting to any other validation data set for model evaluation in the model construction process. Computational efficiency is ensured using an orthogonal forward regression, but the algorithm incrementally minimizes the PRESS statistic instead of the usual sum of the squared training errors. A local regularization method can naturally be incorporated into the model selection procedure to further enforce model sparsity. The proposed algorithm is fully automatic, and the user is not required to specify any criterion to terminate the model construction procedure. Comparisons with some of the existing state-of-art modeling methods are given, and several examples are included to demonstrate the ability of the proposed algorithm to effectively construct sparse models that generalize well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new robust neurofuzzy model construction algorithm has been introduced for the modeling of a priori unknown dynamical systems from observed finite data sets in the form of a set of fuzzy rules. Based on a Takagi-Sugeno (T-S) inference mechanism a one to one mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables rule based knowledge to be extracted from matrix subspace to enhance model transparency. In order to achieve maximized model robustness and sparsity, a new robust extended Gram-Schmidt (G-S) method has been introduced via two effective and complementary approaches of regularization and D-optimality experimental design. Model rule bases are decomposed into orthogonal subspaces, so as to enhance model transparency with the capability of interpreting the derived rule base energy level. A locally regularized orthogonal least squares algorithm, combined with a D-optimality used for subspace based rule selection, has been extended for fuzzy rule regularization and subspace based information extraction. By using a weighting for the D-optimality cost function, the entire model construction procedure becomes automatic. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal state estimation from given observations of a dynamical system by data assimilation is generally an ill-posed inverse problem. In order to solve the problem, a standard Tikhonov, or L2, regularization is used, based on certain statistical assumptions on the errors in the data. The regularization term constrains the estimate of the state to remain close to a prior estimate. In the presence of model error, this approach does not capture the initial state of the system accurately, as the initial state estimate is derived by minimizing the average error between the model predictions and the observations over a time window. Here we examine an alternative L1 regularization technique that has proved valuable in image processing. We show that for examples of flow with sharp fronts and shocks, the L1 regularization technique performs more accurately than standard L2 regularization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conditions are given under which a descriptor, or generalized state-space system can be regularized by output feedback. It is shown that under these conditions, proportional and derivative output feedback controls can be constructed such that the closed-loop system is regular and has index at most one. This property ensures the solvability of the resulting system of dynamic-algebraic equations. A reduced form is given that allows the system properties as well as the feedback to be determined. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For linear multivariable time-invariant continuous or discrete-time singular systems it is customary to use a proportional feedback control in order to achieve a desired closed loop behaviour. Derivative feedback is rarely considered. This paper examines how derivative feedback in descriptor systems can be used to alter the structure of the system pencil under various controllability conditions. It is shown that derivative and proportional feedback controls can be constructed such that the closed loop system has a given form and is also regular and has index at most 1. This property ensures the solvability of the resulting system of dynamic-algebraic equations. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way. The problem of pole placement with derivative feedback alone and in combination with proportional state feedback is also investigated. A computational algorithm for improving the “conditioning” of the regularized closed loop system is derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the regularization problem for linear, constant coefficient descriptor systems Ex' = Ax+Bu, y1 = Cx, y2 = Γx' by proportional and derivative mixed output feedback. Necessary and sufficient conditions are given, which guarantee that there exist output feedbacks such that the closed-loop system is regular, has index at most one and E+BGΓ has a desired rank, i.e., there is a desired number of differential and algebraic equations. To resolve the freedom in the choice of the feedback matrices we then discuss how to obtain the desired regularizing feedback of minimum norm and show that this approach leads to useful results in the sense of robustness only if the rank of E is decreased. Numerical procedures are derived to construct the desired feedback gains. These numerical procedures are based on orthogonal matrix transformations which can be implemented in a numerically stable way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study linear variable coefficient control problems in descriptor form. Based on a behaviour approach and the general theory for linear differential algebraic systems we give the theoretical analysis and describe numerically stable methods to determine the structural properties of the system.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implicit dynamic-algebraic equations, known in control theory as descriptor systems, arise naturally in many applications. Such systems may not be regular (often referred to as singular). In that case the equations may not have unique solutions for consistent initial conditions and arbitrary inputs and the system may not be controllable or observable. Many control systems can be regularized by proportional and/or derivative feedback.We present an overview of mathematical theory and numerical techniques for regularizing descriptor systems using feedback controls. The aim is to provide stable numerical techniques for analyzing and constructing regular control and state estimation systems and for ensuring that these systems are robust. State and output feedback designs for regularizing linear time-invariant systems are described, including methods for disturbance decoupling and mixed output problems. Extensions of these techniques to time-varying linear and nonlinear systems are discussed in the final section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the consistency of the recently proposed regularization of an identity based solution in open bosonic string field theory. We show that the equation of motion is satisfied when it is contracted with the regularized solution itself. Additionally, we propose a similar regularization of an identity based solution in the modified cubic superstring field theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the first phase of a project attempting to construct an efficient general-purpose nonlinear optimizer using an augmented Lagrangian outer loop with a relative error criterion, and an inner loop employing a state-of-the art conjugate gradient solver. The outer loop can also employ double regularized proximal kernels, a fairly recent theoretical development that leads to fully smooth subproblems. We first enhance the existing theory to show that our approach is globally convergent in both the primal and dual spaces when applied to convex problems. We then present an extensive computational evaluation using the CUTE test set, showing that some aspects of our approach are promising, but some are not. These conclusions in turn lead to additional computational experiments suggesting where to next focus our theoretical and computational efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We implement a cutoff-independent regularization of four-fermion interactions to calculate the color-superconducting gap parameter in quark matter. The traditional cutoff regularization has difficulties for chemical potentials mu of the order of the cutoff Lambda, predicting in particular a vanishing gap at mu similar to Lambda. The proposed cutoff-independent regularization predicts a finite gap at high densities and indicates a smooth matching with the weak coupling QCD prediction for the gap at asymptotically high densities.