967 resultados para regression rate of a melting interface
Resumo:
Objective To determine variables that predict the rate of decline in fetal hemoglobin levels in alloimmune disease. Method Retrospective review of singleton pregnancies that underwent first and second intrauterine transfusions for treatment of fetal anemia because of maternal Rh alloimmunization in a tertiary referral center. Results Forty-one first intrauterine transfusions were performed at 26.1?weeks (standard deviation, SD, 4.6), mean volume of blood transfused was 44.4?mL (SD 23.5) and estimated feto-placental volume expansion was 51.3% (SD 14.5%). Between first and second transfusion, hemoglobin levels reduced on average 0.40?g/dl/day (SD 0.25). Stepwise multiple regression analysis demonstrated that this rate significantly correlated with hemoglobin levels after the first transfusion, the interval between both procedures, and middle cerebral artery systolic velocity before the second transfusion. Conclusion The rate of decline in fetal hemoglobin levels between first and second transfusions in alloimmune disease can be predicted by a combination of hemoglobin levels after the first transfusion, interval between both procedures, and middle cerebral artery systolic velocity before the second transfusion. (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Background. The definition of fever, and thus fever and neutropenia (FN), varies between different pediatric oncology centers. Higher temperature limit should reduce FN rates, but may increase rates of FN with complications by delaying therapy. This study determined if different fever definitions are associated with different FN rates. Procedure. Two pediatric oncology centers had used three fever definitions in 2004–2011: ear temperature >=38.5°C persisting >=2 hours (low definition); axillary temperature >=38.5°C >=2 hours or >=39.0°C once (middle); and ear temperature >=39.0°C once (high). Clinical information was retrospectively extracted from charts. FN rates were compared using mixed Poisson regression. Results. In 521 pediatric patients with cancer, 783 FN were recorded during 6,009 months cumulative chemotherapy exposure time (501 years; rate, 0.13/month [95% CI, 0.12–0.14]), 124 of them with bacteremia (16%; 0.021/month [0.017–0.025]). In univariate analysis, the high versus low fever definition was associated with a lower FN rate (0.10/month [0.08–0.11] vs. 0.15/month [0.13–0.16]; rate ratio, 0.66 [0.45–0.97]; P ¼ 0.036), the middle definition was intermediate (0.13/month [0.11–0.15]). This difference was not confirmed in multivariate analysis (rate ratio, 0.94 [0.67–1.33]; P ¼ 0.74). The high versus low definition was not associated with an increased rate of FN with bacteremia (multivariate rate ratio, 1.39 [0.53–3.62]; P ¼ 0.50). Conclusion. A higher fever definition was not associated with a lower FN rate, nor with an increased rate of FN with bacteremia. These may be false negative findings due to methodological limitations. These questions, with their potential impact on health-related quality of life, and on costs, need to be assessed in prospective studies.
Resumo:
Single-screw extrusion is one of the widely used processing methods in plastics industry, which was the third largest manufacturing industry in the United States in 2007 [5]. In order to optimize the single-screw extrusion process, tremendous efforts have been devoted for development of accurate models in the last fifty years, especially for polymer melting in screw extruders. This has led to a good qualitative understanding of the melting process; however, quantitative predictions of melting from various models often have a large error in comparison to the experimental data. Thus, even nowadays, process parameters and the geometry of the extruder channel for the single-screw extrusion are determined by trial and error. Since new polymers are developed frequently, finding the optimum parameters to extrude these polymers by trial and error is costly and time consuming. In order to reduce the time and experimental work required for optimizing the process parameters and the geometry of the extruder channel for a given polymer, the main goal of this research was to perform a coordinated experimental and numerical investigation of melting in screw extrusion. In this work, a full three-dimensional finite element simulation of the two-phase flow in the melting and metering zones of a single-screw extruder was performed by solving the conservation equations for mass, momentum, and energy. The only attempt for such a three-dimensional simulation of melting in screw extruder was more than twenty years back. However, that work had only a limited success because of the capability of computers and mathematical algorithms available at that time. The dramatic improvement of computational power and mathematical knowledge now make it possible to run full 3-D simulations of two-phase flow in single-screw extruders on a desktop PC. In order to verify the numerical predictions from the full 3-D simulations of two-phase flow in single-screw extruders, a detailed experimental study was performed. This experimental study included Maddock screw-freezing experiments, Screw Simulator experiments and material characterization experiments. Maddock screw-freezing experiments were performed in order to visualize the melting profile along the single-screw extruder channel with different screw geometry configurations. These melting profiles were compared with the simulation results. Screw Simulator experiments were performed to collect the shear stress and melting flux data for various polymers. Cone and plate viscometer experiments were performed to obtain the shear viscosity data which is needed in the simulations. An optimization code was developed to optimize two screw geometry parameters, namely, screw lead (pitch) and depth in the metering section of a single-screw extruder, such that the output rate of the extruder was maximized without exceeding the maximum temperature value specified at the exit of the extruder. This optimization code used a mesh partitioning technique in order to obtain the flow domain. The simulations in this flow domain was performed using the code developed to simulate the two-phase flow in single-screw extruders.
Resumo:
BACKGROUND: The aim of this study was to determine the rates of outpatient cataract surgery (ROCS) in ten European countries and to find country-specific health indicators explaining the differences. METHODS: Using data from the Survey of Health, Ageing and Retirement in Europe (SHARE), 251 eligible respondents were identified for which cataract surgery was the last surgical procedure. The ROCS of ten countries were compared using logistic regression. The influence of the public expenditure on health as per cent of the total expenditure on health, of the number of acute care beds per 1,000 population, and of the number of practicing physicians per 1,000 population, was studied by multiple logistic regression. Additional information was obtained from country-specific opinion leaders in the field of cataract surgery. RESULTS: The ROCS differed significantly between the ten analysed European countries where Denmark had the highest (100%) and Austria the lowest (0%) rate of day care surgery. A decrease in the density of acute care beds (p < 0.0000001) and in the density of practicing physicians (p < 0.05) and an increase in the public expenditure on health as per cent of the total health expenditure (p < 0.01) lead to an increase in the ROCS. According to the opinion leaders, regulations and financial incentives also have a strong influence on the ROCS. CONCLUSIONS: The outpatient rate of cataract surgery in the ten European countries was mainly influenced by the acute-care beds density, but also by the density of practicing physicians, and by the public expenditure on health.
Resumo:
A combinatorial protocol (CP) is introduced here to interface it with the multiple linear regression (MLR) for variable selection. The efficiency of CP-MLR is primarily based on the restriction of entry of correlated variables to the model development stage. It has been used for the analysis of Selwood et al data set [16], and the obtained models are compared with those reported from GFA [8] and MUSEUM [9] approaches. For this data set CP-MLR could identify three highly independent models (27, 28 and 31) with Q2 value in the range of 0.632-0.518. Also, these models are divergent and unique. Even though, the present study does not share any models with GFA [8], and MUSEUM [9] results, there are several descriptors common to all these studies, including the present one. Also a simulation is carried out on the same data set to explain the model formation in CP-MLR. The results demonstrate that the proposed method should be able to offer solutions to data sets with 50 to 60 descriptors in reasonable time frame. By carefully selecting the inter-parameter correlation cutoff values in CP-MLR one can identify divergent models and handle data sets larger than the present one without involving excessive computer time.
Resumo:
Histopathologic tumor regression grades (TRGs) after neoadjuvant chemotherapy predict survival in different cancers. In bladder cancer, corresponding studies have not been conducted. Fifty-six patients with advanced invasive urothelial bladder cancer received neoadjuvant chemotherapy before cystectomy and lymphadenectomy. TRGs were defined as follows: TRG1: complete tumor regression; TRG2: >50% tumor regression; TRG3: 50% or less tumor regression. Separate TRGs were assigned for primary tumors and corresponding lymph nodes. The prognostic impact of these 2 TRGs, the highest (dominant) TRG per patient, and competing tumor features reflecting tumor regression (ypT/ypN stage, maximum diameter of the residual tumor) were determined. Tumor characteristics in initial transurethral resection of the bladder specimens were tested for response prediction. The frequency of TRGs 1, 2, and 3 in the primary tumors were n=16, n=19, and n=21; corresponding data from the lymph nodes were n=31, n=9, and n=16. Interobserver agreement in determination of the TRG was strong (κ=0.8). Univariately, all evaluated parameters were significantly (P≤0.001) related to overall survival; however, the segregation of the Kaplan-Meier curves was best for the dominant TRG. In multivariate analysis, only dominant TRG predicted overall survival independently (P=0.035). In transurethral resection specimens of the chemotherapy-naive bladder cancer, the only tumor feature with significant (P<0.03) predictive value for therapy response was a high proliferation rate. In conclusion, among all parameters reflecting tumor regression, the dominant TRG was the only independent risk factor. A favorable chemotherapy response is associated with a high proliferation rate in the initial chemotherapy-naive bladder cancer. This feature might help personalize neoadjuvant chemotherapy.
Resumo:
PURPOSE To evaluate the effect of the vitreomacular interface (VMI) on treatment efficacy of intravitreal therapy in uveitic cystoid macular oedema (CME). METHODS Retrospective analysis of CME resolution, CME recurrence rate and monthly course of central retinal thickness (CRT), retinal volume (RV) and best corrected visual acuity (BCVA) after intravitreal injection with respect to the VMI configuration on spectral-domain OCT using chi-squared test and repeated measures anova adjusted for confounding covariates epiretinal membrane, administered drug and subretinal fluid. RESULTS Fifty-nine eyes of 53 patients (mean age: 47.4 ± 16.9 years) were included. VMI status had no effect on complete CME resolution rate (p = 0.16, corrected p-value: 0.32), time until resolution (p = 0.09, corrected p-value: 0.27) or CME relapse rate (p = 0.29, corrected p-value: 0.29). Change over time did not differ among the VMI configuration groups for BVCA (p = 0.82) and RV (p = 0.18), but CRT decrease was greater and faster in the posterior vitreous detachment (PVD) group compared to the posterior vitreous attachment (PVA) and vitreous macular adhesion (VMA) groups (p = 0.04). Also, the percentage of patients experiencing a ≥ 20% CRT thickness decrease after intravitreal injection was greater in the PVD group (83%) compared to the VMA (64%) and the PVA (16%) group (p = 0.027), however, not after correction for multiple testing (corrected p-value: 0.11). CONCLUSION The VMI configuration seems to be a factor contributing to treatment efficacy in uveitic CME in terms of CRT decrease, although BCVA outcome did not differ according to VMI status.
Resumo:
AIM To compare the survival rates of Class II Atraumatic Restorative Treatment (ART) restorations placed in primary molars using cotton rolls or rubber dam as isolation methods. METHODS A total of 232 children, 6-7 years old, both genders, were selected having one primary molar with proximal dentine lesion. The children were randomly assigned into two groups: control group with Class II ART restoration made using cotton rolls and experimental group using rubber dam. The restorations were evaluated by eight calibrated evaluators (Kappa > 0.8) after 6, 12, 18 and 24 months. RESULTS A total of 48 (20.7%) children were considered dropout, after 24 months. The cumulative survival rate after 6, 12, 18 and 24 months was 61.4%, 39.0%, 29.1% and 18.0%, respectively for the control group, and 64.1%, 55.1%, 40.1% and 32.1%, respectively for the rubber dam group. The log rank test for censored data showed no statistical significant difference between the groups (P = 0.07). The univariate Cox Regression showed no statistical significant difference after adjusting for independent variables (P > 0.05). CONCLUSION Both groups had similar survival rates, and after 2 years, the use of rubber dam does not increase the success of Class II ART restorations significantly.
Resumo:
Interactive documents for use with the World Wide Web have been developed for viewing multi-dimensional radiographic and visual images of human anatomy, derived from the Visible Human Project. Emphasis has been placed on user-controlled features and selections. The purpose was to develop an interface which was independent of host operating system and browser software which would allow viewing of information by multiple users. The interfaces were implemented using HyperText Markup Language (HTML) forms, C programming language and Perl scripting language. Images were pre-processed using ANALYZE and stored on a Web server in CompuServe GIF format. Viewing options were included in the document design, such as interactive thresholding and two-dimensional slice direction. The interface is an example of what may be achieved using the World Wide Web. Key applications envisaged for such software include education, research and accessing of information through internal databases and simultaneous sharing of images by remote computers by health personnel for diagnostic purposes.
Resumo:
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros
Resumo:
Objectives To evaluate differences among patients with different clinical features of ALS, we used our Bayesian method of motor unit number estimation (MUNE). Methods We performed serial MUNE studies on 42 subjects who fulfilled the diagnostic criteria for ALS during the course of their illness. Subjects were classified into three subgroups according to whether they had typical ALS (with upper and lower motor neurone signs) or had predominantly upper motor neurone weakness with only minor LMN signs, or predominantly lower motor neurone weakness with only minor UMN signs. In all subjects we calculated the half life of MUs, defined as the expected time for the number of MUs to halve, in one or more of the abductor digiti minimi (ADM), abductor pollicis brevis (APB) and extensor digitorum brevis (EDB) muscles. Results The mean half life of MUs was less in subjects who had typical ALS with both upper and lower motor neurone signs than in those with predominantly upper motor neurone weakness or predominantly lower motor neurone weakness. In 18 subjects we analysed the estimated size of the MUs and demonstrated the appearance of large MUs in subjects with upper or lower motor neurone predominant weakness. We found that the appearance of large MUs was correlated with the half life of MUs. Conclusions Patients with different clinical features of ALS have different rates of loss and different sizes of MUs. Significance: These findings could indicate differences in disease pathogenesis.