859 resultados para redox cycling
Resumo:
We present results of an inorganic geochemical pore water and sediment study conducted on Quaternary sediments from the western Arctic Ocean. The sediment cores were recovered in 2008 from the southern Mendeleev Ridge during RV Polarstern Expedition ARK-XXIII/3. With respect to sediment sources and depositional processes, peaks in Ca/Al, Mg/Al, Sr/Al and Sr/Mg indicate enhanced input of both ice-rafted (mainly dolomite) and biogenic carbonate during deglacial warming phases. Distinct and repetitive brown layers enriched in Mn (oxyhydr)oxides occur mostly in association with these carbonate-rich intervals. For the first time, we show that the brown layers are also consistently enriched in scavenged trace metals Co, Cu, Mo and Ni. The bioturbation patterns of the brown layers, specifically well-defined brown burrows into the underlying sediments, support formation close to the sediment-water interface. The Mn and trace metal enrichments were probably initiated under warmer climate conditions. Both river runoff and melting sea ice delivered trace metals to the Arctic Ocean, but also enhanced seasonal productivity and organic matter export to the sea floor. As Mn (oxyhydr)oxides and scavenged trace metals were deposited at the sea floor, a co-occurring organic matter "pulse" triggered intense diagenetic Mn cycling at the sediment-water interface. These processes resulted in the formation of Mn and trace metal enrichments, but almost complete organic matter degradation. As warmer conditions ceased, reduced riverine runoff and/or a solid sea ice cover terminated the input of riverine trace metal and fresh organic matter, and greyish-yellowish sediments poor in Mn and trace metals were deposited. Oxygen depletion of Arctic bottom waters as potential cause for the lack of Mn enrichments during glacial intervals is highly improbable. While the original composition and texture of the brown layers resulted from specific climatic conditions (including transient Mn redox cycling at the sediment-water interface), pore water data show that early diagenetic Mn redistribution is still affecting the organic-poor sediments in several meters depth. Given persistent steady state diagenetic conditions, purely authigenic Mn-rich brown layers may form, while others may completely vanish. The degree of diagenetic Mn redistribution largely depends on the depositional environment within the Arctic Ocean, the availability of Mn and organic matter, and seems to be recorded by the Co/Mo ratios of single Mn-rich layers. We conclude that brown Arctic sediment layers are not necessarily synchronous features, and correlating them across different parts of the Arctic Ocean without additional age control is not recommended.
Resumo:
In this study, we investigate phosphorus (P) and iron (Fe) cycling in sediments along a depth transect from within to well below the oxygen minimum zone (OMZ) in the northern Arabian Sea (Murray Ridge). Pore-water and solid-phase analyses show that authigenic formation of calcium phosphate minerals (Ca-P) is largely restricted to where the OMZ intersects the seafloor topography, likely due to higher depositional fluxes of reactive P. Nonetheless, increased ratios of organic carbon to organic P (Corg/Porg) and to total reactive P (Corg/Preactive) in surface sediments indicate that the overall burial efficiency of P relative to Corg decreases under the low bottom water oxygen concentrations (BWO) in the OMZ. The relatively constant Fe/Al ratio in surface sediments along the depth transect suggest that corresponding changes in Fe burial are limited. Sedimentary pyrite contents are low throughout the ~25 cm sediment cores at most stations, as commonly observed in the Arabian Sea OMZ. However, pyrite is an important sink for reactive Fe at one station in the OMZ. A reactive transport model (RTM) was applied to quantitatively investigate P and Fe diagenesis at an intermediate station at the lower boundary of the OMZ (bottom water O2: ~14 µmol/L). The RTM results contrast with earlier findings in showing that Fe redox cycling can control authigenic apatite formation and P burial in Arabian Sea sediment. In addition, results suggest that a large fraction of the sedimentary Ca-P is not authigenic, but is instead deposited from the water column and buried. Dust is likely a major source of this Ca-P. Inclusion of the unreactive Ca-P pool in the Corg/P ratio leads to an overestimation of the burial efficiency of reactive P relative to Corg along the depth transect. Moreover, the unreactive Ca-P accounts for ~85% of total Ca-P burial. In general, our results reveal large differences in P and Fe chemistry between stations in the OMZ, indicating dynamic sedimentary conditions under these oxygen-depleted waters.
Resumo:
Reactive iron (oxyhydr)oxide minerals preferentially undergo early diagenetic redox cycling which can result in the production of dissolved Fe(II), adsorption of Fe(II) onto particle surfaces, and the formation of authigenic Fe minerals. The partitioning of iron in sediments has traditionally been studied by applying sequential extractions that target operationally-defined iron phases. Here, we complement an existing sequential leaching method by developing a sample processing protocol for d56Fe analysis, which we subsequently use to study Fe phase-specific fractionation related to dissimilatory iron reduction in a modern marine sediment. Carbonate-Fe was extracted by acetate, easily reducible oxides (e.g. ferrihydrite and lepidocrocite) by hydroxylamine-HCl, reducible oxides (e.g. goethite and hematite) by dithionite-citrate, and magnetite by ammonium oxalate. Subsequently, the samples were repeatedly oxidized, heated and purified via Fe precipitation and column chromatography. The method was applied to surface sediments collected from the North Sea, south of the Island of Helgoland. The acetate-soluble fraction (targeting siderite and ankerite) showed a pronounced downcore d56Fe trend. This iron pool was most depleted in 56Fe close to the sediment-water interface, similar to trends observed for pore-water Fe(II). We interpret this pool as surface-reduced Fe(II), rather than siderite or ankerite, that was open to electron and atom exchange with the oxide surface. Common extractions using 0.5 M HCl or Na-dithionite alone may not resolve such trends, as they dissolve iron from isotopically distinct pools leading to a mixed signal. Na-dithionite leaching alone, for example, targets the sum of reducible Fe oxides that potentially differ in their isotopic fingerprint. Hence, the development of a sequential extraction Fe isotope protocol provides a new opportunity for detailed study of the behavior of iron in a wide-range of environmental settings.
Resumo:
Leg 165 of the Ocean Drilling Program afforded a unique opportunity to investigate organic and inorganic geochemistry across a wide gradient of sediment compositions and corresponding chemical pathways. The solid fractions at Sites 998, 999, 1000, and 1001 reveal varying proportions of reactive carbonate species, a labile volcanic ash fraction occurring in discrete layers and as a dispersed component, and detrital fluxes that derive from continental weathering. The relative proportions and reactivities of these end-members strongly dictate the character of the diagenetic profiles observed during the pore-water work of Leg 165. In addition, alteration of the well-characterized basaltic basement at Site 1001 has provided a strong signal that is reflected in many of the dissolved components. The relative effects of basement alteration and diagenesis within the sediment column are discussed in terms of downcore relationships for dissolved calcium and magnesium. With the exception of Site 1002 in the Cariaco Basin, the sediments encountered during Leg 165 were uniformly deficient in organic carbon (typically <0.1 wt%). Consequently, rates of organic oxidation were generally low and dominated by suboxic pathways with subordinate levels of bacterial sulfate reduction and methanogenesis. The low rates of organic remineralization are supported by modeled rates of sulfate reduction. Site 1000 provided an exception to the generally low levels of microbially mediated redox cycling. At this site the sediment is slightly more enriched in organic phases, and externally derived thermogenic hydrocarbons appear to aid in driving enhanced levels of redox diagenesis at great depths below the seafloor. The entrapment of these volatiles corresponds with a permeability seal defined by a pronounced Miocene minimum in calcium carbonate concentration recognized throughout the basin and with a dramatic downcore increase in the magnitude of limestone lithification. The latter has been tentatively linked to increases in alkalinity associated with microbial oxidation of organic matter and gaseous hydrocarbons. Recognition and quantification of previously unconstrained large volumes and frequencies of Eocene and Miocene silicic volcanic ash within the Caribbean Basin is one of the major findings of Leg 165. High frequencies of volcanic ash layers manifest as varied but often dominant controls on pore-water chemistry. Sulfur isotope results are presented that speak to secondary metal and sulfur enrichments observed in ash layers sampled during Leg 165. Ultimately, a better mechanistic understanding of these processes and the extent to which they have varied spatially and temporally may bear on the global mass balances for a range of major and minor dissolved components of seawater.
Resumo:
The distribution of redox-sensitive metals in sediments is potentially a proxy for past ocean ventilation and productivity, but deconvolving these two major controls has proved difficult to date. Here we present a 740 kyr long record of trace element concentrations from an archived sediment core collected at ~15°S on the western flank of the East Pacific Rise (EPR) on 1.1 Myr old crust and underlying the largest known hydrothermal plume in the world ocean. The downcore trace element distribution is controlled by a variable diagenetic overprint of the inferred primary hydrothermal plume input. Two main diagenetic processes are operating at this site: redox cycling of transition metals and ferrihydrite to goethite transition during aging. The depth of oxidation in these sediments is controlled by fluctuations in the relative balance of bottom water oxygen and electron donor input (organic matter and hydrothermal sulfides). These fluctuations induce apparent variations in the accumulation of redox-sensitive species with time. Subsurface U and P peaks in glacial age sediments, in this and other published data sets along the southern EPR, indicate that basin-wide changes in deep ocean ventilation, in particular at glacial-interglacial terminations II, III, IV, and V, alter the depth of the oxidation front in the sediments. These basin-wide changes in the deep Pacific have significant implications for carbon partitioning in the ocean-atmosphere system, and the distribution of redox-sensitive metals in ridge crest sediment can be used to reconstruct past ocean conditions at abyssal depths in the absence of alternative proxy records.
Resumo:
The input of iron to the Arctic Ocean plays a critical role in the productivity of aquatic ecosystems and is potentially impacted by climate change. We examine Fe isotope systematics of dissolved and colloidal Fe from several Arctic and sub-Arctic rivers in northern Eurasia and Alaska. We demonstrate that the Fe isotopic (δ56Fe) composition of large rivers, such as the Ob’ and Lena, has a restricted range of δ56Fe values ca.–0.11 ± 0.13‰, with minimal seasonal variability, in stark contrast to smaller organic-rich rivers with an overall δ56Fe range from–1.7 to + 1.6‰. The preferential enrichment with heavy Fe isotopes observed in low molecular weight colloidal fraction and during the high-flow period is consistent with the role of organic complexation of Fe. The light Fe isotope signatures of smaller rivers and meltwater reflect active redox cycling. Data synthesis reveals that small organic-rich rivers and meltwater in Arctic environments may contribute disproportionately to the input of labile Fe in the Arctic Ocean, while bearing contrasting Fe isotope compositions compared to larger rivers.
Resumo:
Solid oxide fuel cell (SOFC) is an electrochemical device that converts chemical energy into electric power with high efficiency. Traditional SOFC has its disadvantages, such as redox cycling instability and carbon deposition while using hydrocarbon fuels. It is because traditional SOFC uses Ni-cermet as anode. In order to solve these problems, ceramic anode is a good candidate to replace Ni. However, the conductivity of most ceramic anode materials are much lower than Ni metal, and it introduces high ohmic resistance. How to increase the conductivity is a hot topic in this research field. Based on our proposed mechanism, several types of ceramic materials have been developed. Vanadium doped perovskite, Sr1-x/2VxTi1-xO3 (SVT) and Sr0.2Na0.8Nb1-xVxO3 (SNNV), achieved the conductivity as high as 300 S*cm-1 in hydrogen, without any high temperature reduction. GDC electrolyte supported cell was fabricated with Sr0.2Na0.8Nb0.9V0.1O3 and the performance was measured in hydrogen and methane respectively. Due to vanadium’s intrinsic problems, the anode supported cell is not easy. Fe doped double perovskite Sr2CoMoO6 (SFCM) was also developed. By carefully doping Fe, the conductivity was improved over one magnitude, without any vigorous reducing conditions. SFCM anode supported cell was successfully fabricated with GDC as the electrolyte. By impregnating Ni-GDC nano particles into the anode, the cell can be operated at lower temperatures while having higher performance than the traditional Ni-cermet cells. Meanwhile, this SFCM anode supported SOFC has long term stability in the reformate containing methane. During the anode development, cathode improvement caused by a thin Co-GDC layer was observed. By adding this Co-GDC layer between the electrolyte and the cathode, the interfacial resistance decreases due to fast oxygen ion transport. This mechanism was confirmed via isotope exchange. This Co-GDC layer works with multiple kinds of cathodes and the modified cell’s performance is 3 times as the traditional Ni-GDC cell. With this new method, lowering the SOFC operation temperature is feasible.
Resumo:
Seeds in the field experience wet-dry cycling that is akin to the well-studied commercial process of seed priming in which seeds are hydrated and then re-dried to standardise their germination characteristics. To investigate whether the persistence (defined as in situ longevity) and antioxidant capacity of seeds are influenced by wet-dry cycling, seeds of the global agronomic weed Avena sterilis ssp. ludoviciana were subjected to (1) controlled ageing at 60% relative humidity and 53.5°C for 31 days, (2) controlled ageing then priming, or (3) ageing in the field in three soils for 21 months. Changes in seed viability (total germination), mean germination time, seedling vigour (mean seedling length), and the concentrations of the glutathione (GSH) / glutathione disulphide (GSSG) redox couple were recorded over time. As controlled-aged seeds lost viability, GSH levels declined and the relative proportion of GSSG contributing to total glutathione increased, indicative of a failing antioxidant capacity. Subjecting seeds that were aged under controlled conditions to a wet-dry cycle (to −1 MPa) prevented viability loss and increased GSH levels. Field-aged seeds that underwent numerous wet-dry cycles due to natural rainfall maintained high viability and high GSH levels. Thus wet-dry cycles in the field may enhance seed longevity and persistence coincident with re-synthesis of protective compounds such as GSH.
Resumo:
Redox supercapacitors using polyaniline (PANI) coated. stainless-steel (SS) electrodes have been assembled and characterized. PANI has been deposited on SS substrate by a potentiodynamic method from an acidic electrolyte which contains aniline monomer. By employing stacks of electrodes, each with a geometrical area of 24 cm(2), in acidic perchlorate electrolyte, a capacitance value of about 450 F has been obtained over a long cycle-life. Characterization studies have been carried out by galvanostatic charge-discharge cycling of the capacitors singly, as well as in series and parallel configurations. Various electrical parameters have been evaluated. Use of the capacitors in parallel with a battery for pulse-power loads. and also working of a toy fan connected to the charged capacitors have been demonstrated. A specific capacitance value of about 1300 F g(-1) of PANI has been obtained at a discharge power of about 0.5 kW kg(-1). This value is several times higher than those reported in the literature for PANI and is, perhaps, the highest value known for a capacitor material. The inexpensive SS substrate and the high-capacitance PANI are favorable factors for commercial exploitation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A combined electrochemical method and X-ray photo electron spectroscopy (XPS) has been utilized to understand the Pd(2+)/CeO(2) interaction in Ce(1-x)Pd(x)O(2-delta) (x = 0.02). A constant positive potential (chronoamperometry) is applied to Ce(0.98)Pd(0.02)O(2-delta) working electrode which causes Ce(4+) to reduce to Ce(3+) to the extent of similar to 35%, while Pd remains in the +2 oxidation state. Electrochemically cycling this electrode between 0.0-1.2 V reverts back to the original state of the catalyst. This reversibility is attributed to the reversible reduction of Ce(4+) to Ce(3+) state. CeO(2) electrode with no metal component reduces to CeO(2-y) (y similar to 0.4) after applying 1.2 V which is not reversible and the original composition of CeO(2) cannot be brought back in any electrochemical condition. During the electro-catalytic oxygen evolution reaction at a constant 1.2 V for 1000 s, Ce(0.98)Pd(0.02)O(2-delta) reaches a steady state composition with Pd in the +2 states and Ce(4+) : Ce(3+) in the ratio of 0.65 : 0.35. This composition can be denoted as Ce(0.63)(4+)Ce(0.35)(4+)Pd(0.02)O(2-delta-y) (y similar to 0.17). When pure CeO(2) is put under similar electrochemical condition, it never reaches the steady state composition and reduces almost to 85%. Thus, Ce(0.98)Pd(0.02)O(2-delta) forms a stable electrode for the electro-oxidation of H(2)O to O(2) unlike CeO(2) due to the metal support interaction.
Resumo:
A study of the geochemical cycling of iron and manganese in a seasonally stratified lake, Esthwaite water is described. This work is based on speculative ideas on environmental redox chemistry of iron which were proposed by C.H. Mortimer in the 1940's. These observations have been verified and some speculations confirmed, along with a new understanding of the manganese cycle, and detailed information on the particulate forms of both iron and manganese. Details on the mechanisms and transformations of iron have also emerged.
Resumo:
In this paper, we have investigated the reactivity of the molybdenum oxide film toward some standard redox systems (e.g., ferrocene (Fc) and its derivatives) and observed a few interesting phenomena. The results demonstrate that the electrochemical behaviour of Fc and its derivatives at the oxide-modified carbon fiber (CF) microelectrode differs from that at a bare CF microelectrode, The conductivity of the molybdenum oxide film is seriously affected by the range and the direction of the potential scan, which influences the electrochemical behaviour of these redox systems at the film electrode. If the cycling potential is more positive than the reduction potential of the molybdenum oxide film, the reduction and oxidation peak currents of Fc and its derivatives could not be observed. The result indicates that the molybdenum oxide film on a microelectrode surface cannot transfer electrons between the surface of the electrode and Fc or its derivatives due to the existence of a high resistance between the interface in these potential ranges. On the other hand, if the lower limit of the scan potential was extended to a potential more negative than the reduction peak potential of the film, the oxidation peak of Fc or its derivatives appeared at about the potential relative to E-0 of Fc or its derivatives on the bare electrode, and the peak current is proportional to the concentration of these couples in the electrolyte. To our surprise, the peak height on the modified electrode is much larger than that on the bare CF microelectrode under the same conditions in the range of low concentration of these couples, and the oxidation peak potential of these couples is more negative than that on the bare CF microelectrode. On the basis of the experimental observation, we propose that these redox couples may undergo an interaction with the reduction state of the molybdenum oxide film. The new phenomena that we observed have been explained by using this interaction. (C) 1997 Elsevier Science S.A.
Resumo:
Wine produced using an appassimento-type process represents a new and exciting innovation for the Ontario wine industry. This process involves drying grapes that have already been picked from the vine, which increases the sugar content due to dehydration and induces a variety of changes both within and on the surface of the grapes. Increasing sugar contents in musts subject wine yeast to conditions of high osmolarity during alcoholic fermentations. Under these conditions, yeast growth can be inhibited, target alcohol levels may not be attained and metabolic by-products of the hyperosmotic stress response, including glycerol and acetic acid, may impact wine composition. The further metabolism of acetic acid to acetylCoA by yeast facilitates the synthesis of ethyl acetate, a volatile compound that can also impact wine quality if present in sufficiently high concentrations. The first objective of this project was to understand the effect of yeast strain and sugar concentration on fermentation kinetics and metabolite formation, notably acetic acid and ethyl acetate, during fermentation in appassimento-type must. Our working hypotheses were that (1) the natural isolate Saccharomyces bayanus would produce less acetic acid and ethyl acetate compared to Saccharomyces cerevisiae strain EC-1118 fermenting the high and low sugar juices; (2) the wine produced using the appassimento process would contain higher levels of acetic acid and lower levels of ethyl acetate compared to table wine; (3) and the strains would be similar in the kinetic behavior of their fermentation performances in the high sugar must. This study determined that the S. bayanus strain produced significantly less acetic acid and ethyl acetate in the appassimento wine and table wine fermentations. Differences in acetic acid and ethyl acetate production were also observed within strains fermenting the two sugar conditions. Acetic acid production was higher in table wine fermented by S. bayanus as no acetic acid was produced in appassimento-style wine, and 1.4-times higher in appassimento wine fermented by EC-1118 over that found in table wine. Ethyl acetate production was 27.6-times higher in table wine fermented by S. bayanus, and 5.2-times higher by EC-1118, compared to that in appassimento wine. Sugar utilization and ethanol production were comparable between strains as no significant differences were determined. The second objective of this project was to bring a method in-house for measuring the concentration of pyridine nucleotides, NAD+, NADP+, NADH and NADPH, in yeast cytosolic extract. Development of this method is of applicative interest for our lab group as it will enable the redox balance of the NAD+/ NADH and NADP+/ NADPH systems to be assessed during high sugar fermentations to determine their respective roles as metabolic triggers for acetic acid production. Two methods were evaluated in this study including a UV-endpoint method using a set of enzymatic assay protocols outlined in Bergmeyer (1974) and a colorimetric enzyme cycling method developed by Sigma-Aldrich® using commercial kits. The former was determined to be limited by its low sensitivity following application to yeast extract and subsequent coenzyme analyses, while the latter was shown to exhibit greater sensitivity. The results obtained from the kits indicated high linearity, accuracy and precision of the analytical method for measuring NADH and NADPH, and that it was sensitive enough to measure the low coenzyme concentrations present in yeast extract samples. NADtotal and NADPtotal concentrations were determined to be above the lower limit of quantification and within the range of the respective calibration curves, making this method suitable for our research purposes.
Resumo:
Water table draw-down is thought to increase peat decomposition and, therefore, DOC release. However, several studies have shown lower DOC concentrations during droughts relative to ‘normal’ periods with high water table. We carried out controlled incubation experiments at 10°C on 10x10 cm peat soil cores collected from six UK sites across a sulphur deposition gradient. Our aim was to quantify the balance between microbial consumption and chemical precipitation of DOC due to episodic acidification driven by sulphur redox reactions by comparing changes in soil water chemistry to microbial activity (i.e. soil respiration and trace gas fluxes). During dry periods, all sites showed a concurrent increase in SO4 and soil respiration and a decline in DOC. However, the magnitude of change in both DOC and SO4 varied considerably between sites according to historical sulphur deposition loads and the variation in acid/base chemistry.
Resumo:
Northern wetlands, and particularly peatlands, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Changes in climate are altering peatland hydrology and vegetation communities. These changes are possibly resulting in declines in the ability of peatlands to sequester carbon because losses through carbon oxidation and mineralization are likely to increase relative to C inputs from net primary production in a warmer, drier climate. However, the consequences of interactive effects of altered hydrology and vegetation on carbon storage are not well understood. This research evaluated the importance of plant species, water table, and their interactive effects on porewater quality in a northern peatland with an average pH of 4.54, ranging from 4.15 to 4.8. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), potential enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content. Our results indicate that acetate and propionate concentrations in the sedge-dominated communities declined with depth and water table drawdown, relative to the control and ericaceous treatments. DOC increased in the lowered water table treatments in all vegetation community types, and the peat porewater C:N ratio declined in the sedge-dominated treatments when the water table was lowered. The relationship between DOC and ferrous iron showed significant responses to vegetation type; the exclusion of Ericaceae resulted in less ferrous iron per unit DOC compared to mixed species treatments and Ericaceae alone. This observation was corroborated with higher mean oxidation redox potential profiles (integrating 20, 40, and 70 cm) measured in the sedge treatments, compared with the mixed and Ericaceae species treatments over a growing season. Enzymatic activities did not show as strong of a response to treatments as expected; the oxidative enzyme peroxidase and the hydrolytic enzyme phosphatase were the only enzymes to respond to water table, where the potential activity of both enzymes increased with water table drawdown. Overall, there were significant interactive effects between changes in vegetation and water table position on peat porewater composition. These data suggest that vegetation effects on oxidation reduction potentials and peat porewater character can be as important as water table position in northern bog ecosystems.