984 resultados para recommender system


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis introduced two novel reputation models to generate accurate item reputation scores using ratings data and the statistics of the dataset. It also presented an innovative method that incorporates reputation awareness in recommender systems by employing voting system methods to produce more accurate top-N item recommendations. Additionally, this thesis introduced a personalisation method for generating reputation scores based on users' interests, where a single item can have different reputation scores for different users. The personalised reputation scores are then used in the proposed reputation-aware recommender systems to enhance the recommendation quality.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many current e-commerce systems provide personalization when their content is shown to users. In this sense, recommender systems make personalized suggestions and provide information of items available in the system. Nowadays, there is a vast amount of methods, including data mining techniques that can be employed for personalization in recommender systems. However, these methods are still quite vulnerable to some limitations and shortcomings related to recommender environment. In order to deal with some of them, in this work we implement a recommendation methodology in a recommender system for tourism, where classification based on association is applied. Classification based on association methods, also named associative classification methods, consist of an alternative data mining technique, which combines concepts from classification and association in order to allow association rules to be employed in a prediction context. The proposed methodology was evaluated in some case studies, where we could verify that it is able to shorten limitations presented in recommender systems and to enhance recommendation quality.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The system described herein represents the first example of a recommender system in digital ecosystems where agents negotiate services on behalf of small companies. The small companies compete not only with price or quality, but with a wider service-by-service composition by subcontracting with other companies. The final result of these offerings depends on negotiations at the scale of millions of small companies. This scale requires new platforms for supporting digital business ecosystems, as well as related services like open-id, trust management, monitors and recommenders. This is done in the Open Negotiation Environment (ONE), which is an open-source platform that allows agents, on behalf of small companies, to negotiate and use the ecosystem services, and enables the development of new agent technologies. The methods and tools of cyber engineering are necessary to build up Open Negotiation Environments that are stable, a basic condition for predictable business and reliable business environments. Aiming to build stable digital business ecosystems by means of improved collective intelligence, we introduce a model of negotiation style dynamics from the point of view of computational ecology. This model inspires an ecosystem monitor as well as a novel negotiation style recommender. The ecosystem monitor provides hints to the negotiation style recommender to achieve greater stability of an open negotiation environment in a digital business ecosystem. The greater stability provides the small companies with higher predictability, and therefore better business results. The negotiation style recommender is implemented with a simulated annealing algorithm at a constant temperature, and its impact is shown by applying it to a real case of an open negotiation environment populated by Italian companies

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La comunitat científica que treballa en Intel·ligència Artificial (IA) ha dut a terme una gran quantitat de treball en com la IA pot ajudar a les persones a trobar el que volen dins d'Internet. La idea dels sistemes recomanadors ha estat extensament acceptada pels usuaris. La tasca principal d'un sistema recomanador és localitzar ítems, fonts d'informació i persones relacionades amb els interessos i preferències d'una persona o d'un grup de persones. Això comporta la construcció de models d'usuari i l'habilitat d'anticipar i predir les preferències de l'usuari. Aquesta tesi està focalitzada en l'estudi de tècniques d'IA que millorin el rendiment dels sistemes recomanadors. Inicialment, s'ha dut a terme un anàlisis detallat de l'actual estat de l'art en aquest camp. Aquest treball ha estat organitzat en forma de taxonomia on els sistemes recomanadors existents a Internet es classifiquen en 8 dimensions generals. Aquesta taxonomia ens aporta una base de coneixement indispensable pel disseny de la nostra proposta. El raonament basat en casos (CBR) és un paradigma per aprendre i raonar a partir de la experiència adequat per sistemes recomanadors degut als seus fonaments en el raonament humà. Aquesta tesi planteja una nova proposta de CBR aplicat al camp de la recomanació i un mecanisme d'oblit per perfils basats en casos que controla la rellevància i edat de les experiències passades. Els resultats experimentals demostren que aquesta proposta adapta millor els perfils als usuaris i soluciona el problema de la utilitat que pateixen el sistemes basats en CBR. Els sistemes recomanadors milloren espectacularment la qualitat dels resultats quan informació sobre els altres usuaris és utilitzada quan es recomana a un usuari concret. Aquesta tesi proposa l'agentificació dels sistemes recomanadors per tal de treure profit de propietats interessants dels agents com ara la proactivitat, la encapsulació o l'habilitat social. La col·laboració entre agents es realitza a partir del mètode de filtratge basat en la opinió i del mètode col·laboratiu de filtratge a partir de confiança. Els dos mètodes es basen en un model social de confiança que fa que els agents siguin menys vulnerables als altres quan col·laboren. Els resultats experimentals demostren que els agents recomanadors col·laboratius proposats milloren el rendiment del sistema mentre que preserven la privacitat de les dades personals de l'usuari. Finalment, aquesta tesi també proposa un procediment per avaluar sistemes recomanadors que permet la discussió científica dels resultats. Aquesta proposta simula el comportament dels usuaris al llarg del temps basat en perfils d'usuari reals. Esperem que aquesta metodologia d'avaluació contribueixi al progrés d'aquesta àrea de recerca.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

El treball desenvolupat en aquesta tesi presenta un profund estudi i proveïx solucions innovadores en el camp dels sistemes recomanadors. Els mètodes que usen aquests sistemes per a realitzar les recomanacions, mètodes com el Filtrat Basat en Continguts (FBC), el Filtrat Col·laboratiu (FC) i el Filtrat Basat en Coneixement (FBC), requereixen informació dels usuaris per a predir les preferències per certs productes. Aquesta informació pot ser demogràfica (Gènere, edat, adreça, etc), o avaluacions donades sobre algun producte que van comprar en el passat o informació sobre els seus interessos. Existeixen dues formes d'obtenir aquesta informació: els usuaris ofereixen explícitament aquesta informació o el sistema pot adquirir la informació implícita disponible en les transaccions o historial de recerca dels usuaris. Per exemple, el sistema recomanador de pel·lícules MovieLens (http://movielens.umn.edu/login) demana als usuaris que avaluïn almenys 15 pel·lícules dintre d'una escala de * a * * * * * (horrible, ...., ha de ser vista). El sistema genera recomanacions sobre la base d'aquestes avaluacions. Quan els usuaris no estan registrat en el sistema i aquest no té informació d'ells, alguns sistemes realitzen les recomanacions tenint en compte l'historial de navegació. Amazon.com (http://www.amazon.com) realitza les recomanacions tenint en compte les recerques que un usuari a fet o recomana el producte més venut. No obstant això, aquests sistemes pateixen de certa falta d'informació. Aquest problema és generalment resolt amb l'adquisició d'informació addicional, se li pregunta als usuaris sobre els seus interessos o es cerca aquesta informació en fonts addicionals. La solució proposada en aquesta tesi és buscar aquesta informació en diverses fonts, específicament aquelles que contenen informació implícita sobre les preferències dels usuaris. Aquestes fonts poden ser estructurades com les bases de dades amb informació de compres o poden ser no estructurades com les pàgines web on els usuaris deixen la seva opinió sobre algun producte que van comprar o posseïxen. Nosaltres trobem tres problemes fonamentals per a aconseguir aquest objectiu: 1 . La identificació de fonts amb informació idònia per als sistemes recomanadors. 2 . La definició de criteris que permetin la comparança i selecció de les fonts més idònies. 3 . La recuperació d'informació de fonts no estructurades. En aquest sentit, en la tesi proposada s'ha desenvolupat: 1 . Una metodologia que permet la identificació i selecció de les fonts més idònies. Criteris basats en les característiques de les fonts i una mesura de confiança han estat utilitzats per a resoldre el problema de la identificació i selecció de les fonts. 2 . Un mecanisme per a recuperar la informació no estructurada dels usuaris disponible en la web. Tècniques de Text Mining i ontologies s'han utilitzat per a extreure informació i estructurar-la apropiadament perquè la utilitzin els recomanadors. Les contribucions del treball desenvolupat en aquesta tesi doctoral són: 1. Definició d'un conjunt de característiques per a classificar fonts rellevants per als sistemes recomanadors 2. Desenvolupament d'una mesura de rellevància de les fonts calculada sobre la base de les característiques definides 3. Aplicació d'una mesura de confiança per a obtenir les fonts més fiables. La confiança es definida des de la perspectiva de millora de la recomanació, una font fiable és aquella que permet millorar les recomanacions. 4. Desenvolupament d'un algorisme per a seleccionar, des d'un conjunt de fonts possibles, les més rellevants i fiable utilitzant les mitjanes esmentades en els punts previs. 5. Definició d'una ontologia per a estructurar la informació sobre les preferències dels usuaris que estan disponibles en Internet. 6. Creació d'un procés de mapatge que extreu automàticament informació de les preferències dels usuaris disponibles en la web i posa aquesta informació dintre de l'ontologia. Aquestes contribucions permeten aconseguir dos objectius importants: 1 . Millorament de les recomanacions usant fonts d'informació alternatives que sigui rellevants i fiables. 2 . Obtenir informació implícita dels usuaris disponible en Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A proactive recommender system pushes recommendations to the user when the current situation seems appropriate, without explicit user request. This is conceivable in mobile scenarios such as restaurant or gas station recommendations. In this paper, we present a model for proactivity in mobile recommender systems. The model relies on domain-dependent context modeling in several categories. The recommendation process is divided into two phases to first analyze the current situation and then examine the suitability of particular items. We have implemented a prototype gas station recommender and conducted a survey for evaluation. Results showed good correlation of the output of our system with the assessment of users regarding the question when to generate recommendations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Los sistemas de recomendación son un tipo de solución al problema de sobrecarga de información que sufren los usuarios de los sitios web en los que se pueden votar ciertos artículos. El sistema de recomendación de filtrado colaborativo es considerado como el método con más éxito debido a que sus recomendaciones se hacen basándose en los votos de usuarios similares a un usuario activo. Sin embargo, el método de filtrado de colaboración tradicional selecciona usuarios insuficientemente representativos como vecinos de cada usuario activo. Esto significa que las recomendaciones hechas a posteriori no son lo suficientemente precisas. El método propuesto en esta tesis realiza un pre-filtrado del proceso, mediante el uso de dominancia de Pareto, que elimina los usuarios menos representativos del proceso de selección k-vecino y mantiene los más prometedores. Los resultados de los experimentos realizados en MovieLens y Netflix muestran una mejora significativa en todas las medidas de calidad estudiadas en la aplicación del método propuesto. ABSTRACTRecommender systems are a type of solution to the information overload problem suffered by users of websites on which they can rate certain items. The Collaborative Filtering Recommender System is considered to be the most successful approach as it make its recommendations based on votes of users similar to an active user. Nevertheless, the traditional collaborative filtering method selects insufficiently representative users as neighbors of each active user. This means that the recommendations made a posteriori are not precise enough. The method proposed in this thesis performs a pre-filtering process, by using Pareto dominance, which eliminates the less representative users from the k-neighbor selection process and keeps the most promising ones. The results from the experiments performed on Movielens and Netflix show a significant improvement in all the quality measures studied on applying the proposed method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we provide a method that allows the visualization of similarity relationships present between items of collaborative filtering recommender systems, as well as the relative importance of each of these. The objective is to offer visual representations of the recommender system?s set of items and of their relationships; these graphs show us where the most representative information can be found and which items are rated in a more similar way by the recommender system?s community of users. The visual representations achieved take the shape of phylogenetic trees, displaying the numerical similarity and the reliability between each pair of items considered to be similar. As a case study we provide the results obtained using the public database Movielens 1M, which contains 3900 movies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La importancia de los sistemas de recomendación ha experimentado un crecimiento exponencial como consecuencia del auge de las redes sociales. En esta tesis doctoral presentaré una amplia visión sobre el estado del arte de los sistemas de recomendación. Incialmente, estos estaba basados en fitrado demográfico, basado en contendio o colaborativo. En la actualidad, estos sistemas incorporan alguna información social al proceso de recomendación. En el futuro utilizarán información implicita, local y personal proveniente del Internet de las cosas. Los sistemas de recomendación basados en filtrado colaborativo se pueden modificar con el fin de realizar recomendaciones a grupos de usuarios. Existen trabajos previos que han incluido estas modificaciones en diferentes etapas del algoritmo de filtrado colaborativo: búsqueda de los vecinos, predicción de las votaciones y elección de las recomendaciones. En esta tesis doctoral proporcionaré un nuevo método que realizar el proceso de unficación (pasar de varios usuarios a un grupo) en el primer paso del algoritmo de filtrado colaborativo: cálculo de la métrica de similaridad. Proporcionaré una formalización completa del método propuesto. Explicaré cómo obtener el conjunto de k vecinos del grupo de usuarios y mostraré cómo obtener recomendaciones usando dichos vecinos. Asimismo, incluiré un ejemplo detallando cada paso del método propuesto en un sistema de recomendación compuesto por 8 usuarios y 10 items. Las principales características del método propuesto son: (a) es más rápido (más eficiente) que las alternativas proporcionadas por otros autores, y (b) es al menos tan exacto y preciso como otras soluciones estudiadas. Para contrastar esta hipótesis realizaré varios experimentos que miden la precisión, la exactitud y el rendimiento del método. Los resultados obtenidos se compararán con los resultados de otras alternativas utilizadas en la recomendación de grupos. Los experimentos se realizarán con las bases de datos de MovieLens y Netflix. ABSTRACT The importance of recommender systems has grown exponentially with the advent of social networks. In this PhD thesis I will provide a wide vision about the state of the art of recommender systems. They were initially based on demographic, contentbased and collaborative filtering. Currently, these systems incorporate some social information to the recommendation process. In the future, they will use implicit, local and personal information from the Internet of Things. As we will see here, recommender systems based on collaborative filtering can be used to perform recommendations to group of users. Previous works have made this modification in different stages of the collaborative filtering algorithm: establishing the neighborhood, prediction phase and determination of recommended items. In this PhD thesis I will provide a new method that carry out the unification process (many users to one group) in the first stage of the collaborative filtering algorithm: similarity metric computation. I will provide a full formalization of the proposed method. I will explain how to obtain the k nearest neighbors of the group of users and I will show how to get recommendations using those users. I will also include a running example of a recommender system with 8 users and 10 items detailing all the steps of the method I will present. The main highlights of the proposed method are: (a) it will be faster (more efficient) that the alternatives provided by other authors, and (b) it will be at least as precise and accurate as other studied solutions. To check this hypothesis I will conduct several experiments measuring the accuracy, the precision and the performance of my method. I will compare these results with the results generated by other methods of group recommendation. The experiments will be carried out using MovieLens and Netflix datasets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Product recommender systems are often deployed by e-commerce websites to improve user experience and increase sales. However, recommendation is limited by the product information hosted in those e-commerce sites and is only triggered when users are performing e-commerce activities. In this paper, we develop a novel product recommender system called METIS, a MErchanT Intelligence recommender System, which detects users' purchase intents from their microblogs in near real-time and makes product recommendation based on matching the users' demographic information extracted from their public profiles with product demographics learned from microblogs and online reviews. METIS distinguishes itself from traditional product recommender systems in the following aspects: 1) METIS was developed based on a microblogging service platform. As such, it is not limited by the information available in any specific e-commerce website. In addition, METIS is able to track users' purchase intents in near real-time and make recommendations accordingly. 2) In METIS, product recommendation is framed as a learning to rank problem. Users' characteristics extracted from their public profiles in microblogs and products' demographics learned from both online product reviews and microblogs are fed into learning to rank algorithms for product recommendation. We have evaluated our system in a large dataset crawled from Sina Weibo. The experimental results have verified the feasibility and effectiveness of our system. We have also made a demo version of our system publicly available and have implemented a live system which allows registered users to receive recommendations in real time. © 2014 ACM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Personalized recommender systems aim to assist users in retrieving and accessing interesting items by automatically acquiring user preferences from the historical data and matching items with the preferences. In the last decade, recommendation services have gained great attention due to the problem of information overload. However, despite recent advances of personalization techniques, several critical issues in modern recommender systems have not been well studied. These issues include: (1) understanding the accessing patterns of users (i.e., how to effectively model users' accessing behaviors); (2) understanding the relations between users and other objects (i.e., how to comprehensively assess the complex correlations between users and entities in recommender systems); and (3) understanding the interest change of users (i.e., how to adaptively capture users' preference drift over time). To meet the needs of users in modern recommender systems, it is imperative to provide solutions to address the aforementioned issues and apply the solutions to real-world applications. ^ The major goal of this dissertation is to provide integrated recommendation approaches to tackle the challenges of the current generation of recommender systems. In particular, three user-oriented aspects of recommendation techniques were studied, including understanding accessing patterns, understanding complex relations and understanding temporal dynamics. To this end, we made three research contributions. First, we presented various personalized user profiling algorithms to capture click behaviors of users from both coarse- and fine-grained granularities; second, we proposed graph-based recommendation models to describe the complex correlations in a recommender system; third, we studied temporal recommendation approaches in order to capture the preference changes of users, by considering both long-term and short-term user profiles. In addition, a versatile recommendation framework was proposed, in which the proposed recommendation techniques were seamlessly integrated. Different evaluation criteria were implemented in this framework for evaluating recommendation techniques in real-world recommendation applications. ^ In summary, the frequent changes of user interests and item repository lead to a series of user-centric challenges that are not well addressed in the current generation of recommender systems. My work proposed reasonable solutions to these challenges and provided insights on how to address these challenges using a simple yet effective recommendation framework.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Personalised social matching systems can be seen as recommender systems that recommend people to others in the social networks. However, with the rapid growth of users in social networks and the information that a social matching system requires about the users, recommender system techniques have become insufficiently adept at matching users in social networks. This paper presents a hybrid social matching system that takes advantage of both collaborative and content-based concepts of recommendation. The clustering technique is used to reduce the number of users that the matching system needs to consider and to overcome other problems from which social matching systems suffer, such as cold start problem due to the absence of implicit information about a new user. The proposed system has been evaluated on a dataset obtained from an online dating website. Empirical analysis shows that accuracy of the matching process is increased, using both user information (explicit data) and user behavior (implicit data).