945 resultados para rare earth ion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimethyl formamide complexes of five rare-earth nitrates, M(DMF)4(NO3)3 where M = La, Pr, Nd, Sm or Y have been prepared and their infra-red spectra and conductivities in nitromethane and DMF studied. It is suggested that the co-ordination number of the metal ion in these complexes is nine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth exchanged H–Y zeolites were prepared by simple ion exchange methods at 353 K and have been characterized using different physicochemical techniques. A strong peak around 58 ppm in the 27Al{1H} MAS NMR spectra of these zeolites suggests a tetrahedral coordination for the framework aluminium. Small peak at or near 0 ppm is due to hexa-coordinated extra-framework aluminium and a shoulder peak near 30 ppm is a penta-coordinated aluminium species; [Al(OH)4]−. The vapor-phase benzene alkylation with 1-decene and 1-dodecene was investigated with these catalytic systems. Under the reaction conditions of 448 K, benzene/olefin molar ratio of 20 and time on stream 3 h, the most efficient catalyst was CeH–Y which showed more than 70% of olefin conversion with 48.5% 2-phenyldecane and 46.8%, 2-phenyldodecane selectivities with 1-decene and 1-dodecene respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charge ordering in rare earth manganates of the type Ln(0.5)A(0.5)MnO(3) (Ln = rare earth, A = alkaline earth) is highly sensitive to the average radius of the A-site cations, [r(A)]. Tn the small [r(A)] regime (e.g., Y0.5Ca0.5MnO3), charge ordering occurs in the paramagnetic state, the transformation to an antiferromagnetic state occurring at still lower temperatures. At moderate [r(A)] values (e.g., Nd0.5Sr0.5MnO3), a ferromagnetic metallic state transforms to a charge-ordered antiferromagnetic state with cooling. These two distinct types of charge ordering and associated properties are explained in terms of the variation of the exchange couplings J(FM) and J(AFM) with [r(A)] and the invariance of the single-ion Jahn-Teller energy with [r(A)]. A qualitative temperature-[r(A)] phase diagram, consistent with the experimental observations, has been constructed to describe the properties of the manganates in the different [r(A)] regimes. (C) 1997 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy was used to study the molecular structure of a series of selected rare earth (RE) silicate crystals including Y2SiO5 (YSO), LU2SiO5 (LSO), (Lu0.5Y0.5)(2)SiO5 (LYSO) and their ytterbium-doped samples. Raman spectra show resolved bands below 500 cm(-1) region assigned to the modes of SiO4 and oxygen vibrations. Multiple bands indicate the nonequivalence of the RE-O bonds and the lifting of the degeneracy of the RE ion vibration. Low intensity bands below 500 cm(-1) are an indication of impurities. The (SiO4)(4-) tetrahedra are characterized by bands near 200 cm(-1) which show a separation of the components of nu(4) and nu(2), in the 500-700 cm(-1) region which are attributed to the distorting bending vibration and in the 880-1000 cm(-1) region which are attributed to the symmetric and antisymmetric stretching vibrational modes. The majority of the bands in the 300-610 cm(-1) region of Re2SiO5 were found to arise from vibrations involving both Si and RE ions, indicating that there is considerable mixing of Si displacements with Si-O bending modes and RE-0 stretching modes. The Raman spectra of RE silicate crystals were analyzed in terms of the molecular structure of the crystals, which enabled separation of the bands attributed to distinct vibrational units. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica spheres doped with Eu(TTFA)(3) and/or Sm(TTFA)(3) were synthesized by using the modified Stober method. The transmission electron microscope image reveals that the hybrid spheres have smooth surfaces and an average diameter of about 210 nm. Fluorescence spectrometer was used to analyze the fluorescence properties of hybrid spheres. The results show that multiple energy transfer processes are simultaneously achieved in the same samples co-doped with Eu (TTFA)(3) and Sm(TTFA)(3), namely between the ligand and Eu3+ ion, the ligand and Sm3+ ion, and Sm3+ ion and Eu3+, ion. Energy transfer of Sm3+-> Eu3+, in the hybrid spheres leads to fluorescence enhancement of Eu3+ emission by approximately an order of magnitude. The lifetimes of the hybrid spheres were also measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first aryldiimine NCN-pincer ligated rare earth metal dichlorides (2,6-(2,6-C6H3R2N=CH)(2)C6H3)LnCl(2)(THF)(2) (Ln = Y, R = Me (1), Et (2), Pr (3); R = Et, Ln = La (4), Nd (5), Gd (6), Sm (7), Eu (8), Tb (9), Dy (10), Ho (11), Yb (12), Lu (13)) were successfully synthesized via transmetalation between 2,6-(2,6-C2H3-R2N=CH)(2)-C6H3Li and LnCl(3)(THF)(1 similar to 3.5). These complexes are isostructural monomers with two coordinating THF molecules, where the pincer ligand coordinates to the central metal ion in a kappa C:kappa N: kappa N' tridentate mode, adopting a meridional geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Newrareearth metal bis(alkyl) complexes [(NPNPh)Ln(CH2SiMe3)(2)(THF) (NPNPh:N(Ph)PPh2=NC6H2Me3-2,4,6; Ln = Sc (3a), Ln = Y (3b), Ln = Lu (3c)) and [(NPNPy)Sc(CH2SiMe3)(2)(THF)1 (NPNPY = N(Py)PPh2=NC6H2Me3-2,4,6) (3d)) have been prepared via protonolysis reaction between rare earth metal tris(alkyl)s and the corresponding iminophosphonamines. Complexes 3a-d are analogous monomers of THF solvate. Each metal ion coordinates to a eta(2)-chelated NPN ligand and two cis-located alkyl groups, adopting tetrahedron geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stoichiometric reactions between mesityl azide (MesN(3), Mes = 2,4,6-C6H2Me3) and amino-phosphine ligated rare-earth metal alkyl, LLn(CH2SiMe3) (2)(THF) (L = (2,6-C6H3Me2)NCH2C6H4P(C6H5)(2); Ln = Lu (1a), Sc (1b)), amide, LLu(NH(2,6-(C6H3Pr2)-Pr-i))(2)(THF) (2) and acetylide at room temperature gave the amino-phosphazide ligated rare-earth metal bis(triazenyl) complexes, [L(MesN(3))]Ln[(MesN(3))-(CH2SiMe3)](2) (Ln = Lu (3a); Sc (3b)), bis(amido) complex [L(MesN3)] Lu[NH(2,6-C6H3 Pr-i(2))](2) (4), and bis(alkynyl) complex (5) (L(MesN(3))Lu (C CPh)(2))(2), respectively. The triazenyl group in 3 coordinates to the metal ion in a rare eta(2)-mode via N-beta and N-gamma atoms, generating a triangular metallocycle. The amino-phosphazide ligand, L(MesN(3)), in 3, 4 and 5 chelates to the metal ion in a eta(3)-mode via N-alpha and N-gamma atoms. In the presence of excess phenylacetylene, complex 3a isomerized to 3', where the triazenyl group coordinates to the metal ion in a eta(3) mode via Na and Ng atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deprotonation of (ArNHPPh2NAr2)-N-1 (H[NPN](n), n = 1 - 10) by Ln(CH2SiMe3)(3)(THF)(2) (Ln = Lu, Y, Sc, Er) generated a series of rare-earth metal bis(alkyl) complexes [NPN](n)Ln(CH2SiMe3)(2)(THF)(2) (1-10), which under activation with [Ph3C][B(C6F5)(4)] and AliBu(3) were tested for isoprene polymerization. The correlation between catalytic performances and molecular structures of the complexes has been investigated. Complexes 1-5 and 8, where Ar-1 is nonsubstituted or ortho-alkyl-substituted phenyl, adopt trigonal-bipyramidal geometry. The Ar-1 and Ar-2 rings are perpendicular in 1-4 and 8 but parallel in 5. When Ar-1 is pyridyl, the resultant lutetium and yttrium complexes 9a and 9b adopt tetragonal geometry with the ligand coordinating to the metal ions in a N,N,N-tridentate mode, whereas in the scandium analogue 9c, the ligand coordinates to the Sc3+ ion in a N,N-bidentate mode. These structural characteristics endow the complexes with versatile catalytic performances, With increase of the steric bulkiness of the ortho-substituents Ar-1 and Ar-2, the 3,4-selectivity increased stepwise from 81.6% for lutetium complex 1 to 96.8% for lutetium complex 6 and to 97.8% for lutetium complex 7a. However, further increase of the steric bulk of the ligand led to a slight drop of 3,4-selectivity for the attached complex 5 (95.1%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

M2B5O9X: Re(M = Ca, Sr, Ba; X = Cl, Br; Re = Eu, Th) phosphors were synthesized via solid state method. The products were characterized with X-ray powder diffraction and luminescence spectrometer. The luminescent properties as well. as the influences of the matrix composition and other doping ions on the luminescence of the rare earth ions of the co-doped phosphors were investigated. The coexistence of Eu3+, Eu2+ and Th3+ were observed in these matrices. The phenomenon may be explained by the electron transfer theory. The sensitization of Ce3+ ion improves the intensity of emission of Eu2+, and Tb3+. The competition between electron transfer among conjugate rare earth ions and energy migration might be the reasons for the observation. We predict a novel trichromatic phosphor co-doped with Eu3+ Tb3+ in M2B5O9X.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of indenyl-modified imidazolium bromide [C9H7CH2CH2(NCHCHN(C6H2Me3-2,4,6)CH)Br] ((IndH-NHC-H)Br) with rare earth metal tetra(alkyl) lithium (Ln(CH2SiMe3)(4)Li(THF)(4)) or with (trimethylsilylmethyl)lithium (LiCH2SiMe3) and rare earth metal tris(alkyl)s (Ln(CH2SiMe3)(3)(THF)(2)) sequentially afforded the first NHC-stabilized monomeric rare earth metal bis(alkyl) complexes (Ind-NHC)Ln(CH2SiMe3)(2) (1, Ln = Y; 2, Ln = Lu; 3, Ln = Sc) via double-deprotonation reactions. Complexes 1-3 are THF-free isostructural monomers. The monoanionic Ind-NHC species bond to the central metal ion in a eta(5):kappa(1) constrained geometry configuration (CGC) mode, which combine with the two cis-located alkyl moieties to form a tetrahedron ligand core, leading to the chirality of the complexes. Under the presence of activators AlEt3 and [Ph3C][B(C6F5)(4)], complex 2 showed catalytic activity toward the polymerization of isoprene to afford 3,4-regulated polyisoprene (91%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many phases appear in BaLn(2)Mn(2)O(7) family (Ln = rare earth) belonging to one of the Ruddlesden-Popper type compounds, depending upon the experimental conditions such as heating conditions when prepared and composition. Some of these phases were characterized by powder X-ray diffraction method using Rietveld analysis. These phases have only a little difference in crystal structure which has fundamentally K2NiF4 type structure, although the X-ray diffraction patterns are clearly different: a little deformation or tilting of the oxygen octahedron surrounding a central manganese ion composing the main frame of this structure induce these different diffraction patterns. Phase behavior of these compounds, mainly the detailed relation between various phases in BaTb2Mn2O7, was refined including the data of high temperature X-ray diffractometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, the adsorption of thulium(Ill) from chloride medium on an extraction resin containing bis(2,4,4-trimethylpentyl) monothiophosphinic acid (CL302, HL) has been studied. The results show that 1.5 h is enough for the adsorption equilibrium. The distribution coefficients are determined as a function of the acidity of the aqueous phase and the data are analyzed both graphically and numerically. The plots of log D versus pH give a straight line with a slope of about 3, indicating that 3 protons are released in the adsorption reaction of thulium(III). The content of Cyanex302 in the resin is determined to be 48.21%. The total amount of Tm3+ adsorbed up to resin saturation is determined to be 82.46 mg Tm3+/g resin. Therefore, the sorption reactions of Tm3+ from chloride medium with CL302 can be described as: Tm3+ + 3HL((r)) <----> TmL3(r) + 3H(+) The Freundlich's isothermal adsorption equation is also determined as: log Q = 0.73 log C + 3.05 The amounts (Q) of Tm3+ adsorbed with the resin have been studied at different temperatures (15-40degreesC) at fixed concentrations of Tm3+, amounts of extraction resin, ion strength and acidities in the aqueous phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New luminescent hybrid mesoporous material was prepared by covalent anchoring rare earth complex onto MCM-41 by a postsynthesis approach. The monomer (referred to here as PABI) which plays double roles, i.e., as a ligand for lanthanide ion and as an organic functional molecule to modify MCM-41 is synthesized and characterized by H-1 NMR and MS. The fluorescence spectra show clearly that the hybrid mesoporous material possesses excellent luminescence characteristics. The hybrid mesoporous material retains the structure of MCM-41 after modification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two kinds of rare earth (RE) complexes were intercalated into zirconium bis(monohydrogenphosphate) (alpha -ZrP) by exchanging the RE complexes into the p-methyoxyaniline (PMA) preintercalated compound Zr(O3POH)(2). 2PMA (alpha -ZrP . 2PMA). Powder X-ray diffraction patterns reveal that Eu(DBM)(3)phen (DBM: dibenzoylmethane, phen: 1,10-phenanthroline) and Tb(AA)(3)phen (AA: acetylacetone) intercalated into alpha -ZrP . 2PMA. This was confirmed by the UV-visible spectra of both the RE complexes and the assemblies. At the same time, the assemblies have better luminescent properties, and the fluorescent lifetimes of RE3+ in the excited state in the assemblies are much longer than those in the complexes. The stabilities of the assemblies under UV radiation are much better than those of the RE complexes.