997 resultados para rainfall assessment
Resumo:
A Regional Climate Model (RegCM3) 10-year (1990-1999) simulation over southwestern South Atlantic Ocean (SAO) is evaluated to assess the mean climatology and the simulation errors of turbulent fluxes over the sea. Moreover, the relationship between these fluxes and the rainfall over some cyclogenetic areas is also analyzed. The RegCM3 results are validated using some reanalyses datasets (ERA40, R2, GPCP and WHOI). The summer and winter spatial patterns of latent and sensible heat fluxes simulated by the RegCM3 are in agreement with the reanalyses (WHOI, R2 and ERA40). They show large latent heat fluxes exchange in the subtropical SAO and at higher latitudes in the warm waters of Brazil Current. In particular, the magnitude of RegCM3 latent heat fluxes is similar to the WHOI, which is probably related to two factors: (a) small specific humidity bias, and (b) the RegCM3 flux algorithm. In contrast, the RegCM3 presents large overestimation of sensible heat flux, though it simulates well their spatial pattern. This simulation error is associated with the RegCM3 underestimation of the 2-m air temperature. In southwestern SAO, in three known cyclogenetic areas, the reanalyses and the RegCM3 show the existence of different physical mechanisms that control the annual cycles of latent/sensible heating and rainfall. It is shown that over the eastern coast of Uruguay (35A degrees-43A degrees S) and the southeastern coast of Argentina (44A degrees-52A degrees S) the sea-air moisture and heat exchange play an important role to control the annual cycle of precipitation. This does not happen on the south/southeastern coast of Brazil.
Resumo:
This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of Sao Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of Sao Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society
Resumo:
Regional Climate Model version 3 (RegCM3) simulations of 17 summers (1988-2004) over part of South America south of 5 degrees S were evaluated to identify model systematic errors. Model results were compared to different rainfall data sets (Climate Research Unit (CRU), Climate Prediction Center (CPC), Global Precipitation Climatology Project (GPCP), and National Centers for Environmental Prediction (NCEP) reanalysis), including the five summers mean (1998-2002) precipitation diurnal cycle observed by the Tropical Rainfall Measuring Mission (TRMM)-Precipitation Radar (PR). In spite of regional differences, the RegCM3 simulates the main observed aspects of summer climatology associated with the precipitation (northwest-southeast band of South Atlantic Convergence Zone (SACZ)) and air temperature (warmer air in the central part of the continent and colder in eastern Brazil and the Andes Mountains). At a regional scale, the main RegCM3 failures are the underestimation of the precipitation in the northern branch of the SACZ and some unrealistic intense precipitation around the Andes Mountains. However, the RegCM3 seasonal precipitation is closer to the fine-scale analyses (CPC, CRU, and TRMM-PR) than is the NCEP reanalysis, which presents an incorrect north-south orientation of SACZ and an overestimation of its intensity. The precipitation diurnal cycle observed by TRMM-PR shows pronounced contrasts between Tropics and Extratropics and land and ocean, where most of these features are simulated by RegCM3. The major similarities between the simulation and observation, especially the diurnal cycle phase, are found over the continental tropical and subtropical SACZ regions, which present afternoon maximum (1500-1800 UTC) and morning minimum (0900-1200 UTC). More specifically, over the core of SACZ, the phase and amplitude of the simulated precipitation diurnal cycle are very close to the TRMM-PR observations. Although there are amplitude differences, the RegCM3 simulates the observed nighttime rainfall in the eastern Andes Mountains, over the Atlantic Ocean, and also over northern Argentina. The main simulation deficiencies are found in the Atlantic Ocean and near the Andes Mountains. Over the Atlantic Ocean the convective scheme is not triggered; thus the rainfall arises from the grid-scale scheme and therefore differs from the TRMM-PR. Near the Andes, intense (nighttime and daytime) simulated precipitation could be a response of an incorrect circulation and topographic uplift. Finally, it is important to note that unlike most reported bias of global models, RegCM3 does not trigger the moist convection just after sunrise over the southern part of the Amazon.
Resumo:
The regimen of environmental flows (EF) must be included as terms of environmental demand in the management of water resources. Even though there are numerous methods for the computation of EF, the criteria applied at different steps in the calculation process are quite subjective whereas the results are fixed values that must be meet by water planners. This study presents a friendly-user tool for the assessment of the probability of compliance of a certain EF scenario with the natural regimen in a semiarid area in southern Spain. 250 replications of a 25-yr period of different hydrological variables (rainfall, minimum and maximum flows, ...) were obtained at the study site from the combination of Monte Carlo technique and local hydrological relationships. Several assumptions are made such as the independence of annual rainfall from year to year and the variability of occurrence of the meteorological agents, mainly precipitation as the main source of uncertainty. Inputs to the tool are easily selected from a first menu and comprise measured rainfall data, EF values and the hydrological relationships for at least a 20-yr period. The outputs are the probabilities of compliance of the different components of the EF for the study period. From this, local optimization can be applied to establish EF components with a certain level of compliance in the study period. Different options for graphic output and analysis of results are included in terms of graphs and tables in several formats. This methodology turned out to be a useful tool for the implementation of an uncertainty analysis within the scope of environmental flows in water management and allowed the simulation of the impacts of several water resource development scenarios in the study site.
Resumo:
This paper proposes a spatial-temporal downscaling approach to construction of the intensity-duration-frequency (IDF) relations at a local site in the context of climate change and variability. More specifically, the proposed approach is based on a combination of a spatial downscaling method to link large-scale climate variables given by General Circulation Model (GCM) simulations with daily extreme precipitations at a site and a temporal downscaling procedure to describe the relationships between daily and sub-daily extreme precipitations based on the scaling General Extreme Value (GEV) distribution. The feasibility and accuracy of the suggested method were assessed using rainfall data available at eight stations in Quebec (Canada) for the 1961-2000 period and climate simulations under four different climate change scenarios provided by the Canadian (CGCM3) and UK (HadCM3) GCM models. Results of this application have indicated that it is feasible to link sub-daily extreme rainfalls at a local site with large-scale GCM-based daily climate predictors for the construction of the IDF relations for present (1961-1990) and future (2020s, 2050s, and 2080s) periods at a given site under different climate change scenarios. In addition, it was found that annual maximum rainfalls downscaled from the HadCM3 displayed a smaller change in the future, while those values estimated from the CGCM3 indicated a large increasing trend for future periods. This result has demonstrated the presence of high uncertainty in climate simulations provided by different GCMs. In summary, the proposed spatial-temporal downscaling method provided an essential tool for the estimation of extreme rainfalls that are required for various climate-related impact assessment studies for a given region.
Resumo:
Climate change has resulted in substantial variations in annual extreme rainfall quantiles in different durations and return periods. Predicting the future changes in extreme rainfall quantiles is essential for various water resources design, assessment, and decision making purposes. Current Predictions of future rainfall extremes, however, exhibit large uncertainties. According to extreme value theory, rainfall extremes are rather random variables, with changing distributions around different return periods; therefore there are uncertainties even under current climate conditions. Regarding future condition, our large-scale knowledge is obtained using global climate models, forced with certain emission scenarios. There are widely known deficiencies with climate models, particularly with respect to precipitation projections. There is also recognition of the limitations of emission scenarios in representing the future global change. Apart from these large-scale uncertainties, the downscaling methods also add uncertainty into estimates of future extreme rainfall when they convert the larger-scale projections into local scale. The aim of this research is to address these uncertainties in future projections of extreme rainfall of different durations and return periods. We plugged 3 emission scenarios with 2 global climate models and used LARS-WG, a well-known weather generator, to stochastically downscale daily climate models’ projections for the city of Saskatoon, Canada, by 2100. The downscaled projections were further disaggregated into hourly resolution using our new stochastic and non-parametric rainfall disaggregator. The extreme rainfall quantiles can be consequently identified for different durations (1-hour, 2-hour, 4-hour, 6-hour, 12-hour, 18-hour and 24-hour) and return periods (2-year, 10-year, 25-year, 50-year, 100-year) using Generalized Extreme Value (GEV) distribution. By providing multiple realizations of future rainfall, we attempt to measure the extent of total predictive uncertainty, which is contributed by climate models, emission scenarios, and downscaling/disaggregation procedures. The results show different proportions of these contributors in different durations and return periods.
Resumo:
This study contributes a rigorous diagnostic assessment of state-of-the-art multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with 4 or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are provided for which modern MOEAs should serve as tools and benchmarks in the future water resources literature.
Resumo:
This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of São Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of São Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society
Resumo:
Preface This study was prepared for the Government of Jamaica following the significant physical damage and economic losses that the country sustained as a result of flood rains associated with the development of Hurricane Michelle. The Planning Institute of Jamaica (PIOJ) submitted a request for assistance in undertaking a social, environmental and economic impact assessment to the Economic Commission for Latin America and the Caribbean (ECLAC) on 14 November 2001. ECLAC responded with haste and modified its work plan to accommodate the request. A request for training in the use of the ECLAC Methodology to be delivered to personnel in Jamaica was deferred until the first quarter of 2002, as it was impossible to mount such an initiative at such short notice. This appraisal considers the consequences of the three instances of heavy rainfall that brought on the severe flooding and loss of property and livelihoods. The study was prepared by three members of the ECLAC Natural Disaster Damage Assessment Team over a period of one week in order to comply with the request that it be presented to the Prime Minister on 3 December 2001. The team has endeavoured to complete a workload that would take two weeks with a team of 15 members working assiduously with data already prepared in preliminary form by the national emergency stakeholders. There is need for training in disaster assessment as evidenced by the data collected by the Jamaican officials engaged in the exercise. Their efforts in the future will be more focused and productive after they have received training in the use of the ECLAC Methodology. This study undertakes a sectoral analysis leading to an overall assessment of the damage. It appraises the macroeconomic and social effects and proposes some guidelines for action including mitigating actions subsequent to the devastation caused by the weather system. The team is grateful for the efforts of the Office of Disaster Preparedness and Emergency Management (ODPEM), the associated government ministries and agencies, the Statistical Institute of Jamaica (STATIN), the Planning Institute of Jamaica and the Inter American Development Bank (IDB) for assistance rendered to the team. Indeed, it is the recommendation of the team that STATIN is poised to play a pivotal role in any disaster damage assessment and should be taken on board in that regard. The direct and indirect damages have been assessed in accordance with the methodology developed by ECLAC (1). The results presented are based on the mission's estimates. The study incorporates the information made available to the team and evidence collected in interviews and visits to affected locations. It is estimated that the magnitude of the losses exceeds the country's capacity to address reparations and mitigation without serious dislocation of its development trajectory. The government may wish to approach the international community for assistance in this regard. This appraisal is therefore designed to provide the government and the international community with guidelines for setting national and regional priorities in rehabilitation and reconstruction or resettlement programmes. A purely economic conception of the problem would be limited. A more integrated approach would have a human face and consider the alleviation of human suffering in the affected areas while attending to the economic and fiscal fallout of the disaster. Questions of improved physical planning, watershed management, early warning, emergency response and structural preparedness for evacuation and sheltering the vulnerable population are seen as important considerations for the post disaster phase. Special attention and priority should be placed on including sustainability and increased governance criteria in making social and productive investments, and on allocating resources to the reinforcing and retrofitting of vulnerable infrastructure, basic lifelines and services as part of the reconstruction and rehabilitation strategy. The Jamaican society and government face the opportunity of undertaking action with the benefit of revised paradigms, embarking on institutional, legal and structural reforms to reduce economic, social and environmental vulnerability. The history of flood devastation in the very areas of Portland and St. Mary shows a recurrence of flooding. Accounts of flooding from the earliest recorded accounts pertaining to 1837 are available. Recurrences in 1937, 1940, 1943 and 2001 indicate an ever-present probability of recurrence of similar events. The Government may wish to consider the probable consequences of a part of its population living in flood plains and address its position vis-à¶is land use and the probability of yet another recurrence of flood rains. (1) ECLAC/IDNDR, Manual for estimating the Socio-Economic Effects of Natural Disasters, May,1999.
Resumo:
Climate change affects the fundamental bases of good human health, which are clean air, safe drinking water, sufficient food, and secure shelter. Climate change is known to impact health through three climate dimensions: extreme heat, natural disasters, and infections and diseases. The temporal and spatial climatic changes that will affect the biology and ecology of vectors and intermediate hosts are likely to increase the risks of disease transmission. The greatest effect of climate change on disease transmission is likely to be observed at the extremes of the range of temperatures at which transmission typically occurs. Caribbean countries are marked by unique geographical and geological features. When combined with their physical, infrastructural development, these features make them relatively more prone to negative impacts from changes in climatic conditions. The increased variability of climate associated with slow-moving tropical depressions has implications for water quality through flooding as well as hurricanes. Caribbean countries often have problems with water and sanitation. These problems are exacerbated whenever there is excess rainfall, or no rainfall. The current report aims to prepare the Caribbean to respond better to the anticipated impact of climate change on the health sector, while fostering a subregional Caribbean approach to reducing carbon emissions by 2050. It provides a major advance on the analytical and contextual issues surrounding the impact of climate change on health in the Caribbean by focusing on the vector-borne and waterborne diseases that are anticipated to be impacted directly by climate change. The ultimate goal is to quantify both the direct and indirect costs associated with each disease, and to present adaptation strategies that can address these health concerns effectively to benefit the populations of the Caribbean.
Resumo:
Water security which is essential to life and livelihood, health and sanitation, is determined not only by the water resource, but also by the quality of water, the ability to store surplus from precipitation and runoff, as well as access to and affordability of supply. All of these measures have financial implications for national budgets. The water sector in the context of the assessment and discussion on the impact of climate change in this paper includes consideration of the existing as well as the projected available water resource and the demand in terms of: quantity and quality of surface and ground water, water supply infrastructure - collection, storage, treatment, distribution, and potential for adaptation. Wastewater management infrastructure is also considered a component of the water sector. Saint Vincent and the Grenadines has two distinct hydrological regimes: mainland St Vincent is one of the wetter islands of the eastern Caribbean whereas the Grenadines have a drier climate than St Vincent. Surface water is the primary source of water supply on St Vincent, whereas the Grenadines depend on man-made catchments, rainwater harvesting, wells, and desalination. The island state is considered already water stressed as marked seasonality in rainfall, inadequate supply infrastructure, and institutional capacity constrains water supply. Economic modelling approaches were implemented to estimate sectoral demand and supply between 2011 and 2050. Residential, tourism and domestic demand were analysed for the A2, B2 and BAU scenarios. In each of the three scenarios – A2, B2 and BAU Saint Vincent and the Grenadines will have a water gap represented by the difference between the two curves during the forecast period of 2011 and 2050. The amount of water required increases steadily between 2011 and 2050 implying an increasing demand on the country‘s resources as reflected by the fact that the water supply that is available cannot respond adequately to the demand. The Global Water Partnership in its 2005 policy brief suggested that the best way for countries to build the capacity to adapt to climate change will be to improve their ability to cope with today‘s climate variability (GWP, 2005). This suggestion is most applicable for St Vincent and the Grenadines, as the variability being experienced has already placed the island nation under water stress. Strategic priorities should therefore be adopted to increase water production, increase efficiency, strengthen the institutional framework, and decrease wastage. Cost benefit analysis was stymied by data availability, but the ―no-regrets approach‖ which intimates that adaptation measures will be beneficial to the land, people and economy of Saint Vincent and the Grenadines with or without climate change should be adopted.
Resumo:
Changing precipitation patterns and temperature relate directly to water resources and water security. This report presents the findings of an assessment of the water sector in Grenada with respect to the projected impact of climate change. Grenada‘s water resources comprise primarily surface water, with an estimated groundwater potential to satisfy about 10%-15% of the present potable requirement. On the smaller islands Carriacou and Petite Martinique, domestic water is derived exclusively from rainwater catchments. Rainfall seasonality is marked and the available surface water during the dry season declines dramatically. Changing land use patterns, increase in population, expansion in tourism and future implementation of proposed irrigation schemes are projected to increase future water requirements. Economic modeling approaches were implemented to estimate sectoral demand and supply between 2011 and 2050. Residential, tourism and domestic demand were analysed for the A2, B2 and BAU scenarios as illustrated. The results suggest that water supply will exceed forecasted water demand under B2 and BAU during all four decades. However under the A2 scenario, water demand will exceed water supply by the year 2025. It is important to note that the model has been constrained by the omission of several key parameters, and time series for climate indicators, data for which are unavailable. Some of these include time series for discharge data, rainfall-runoff data, groundwater recharge rates, and evapotranspiration. Further, the findings which seem to indicate adequacy of water are also masked by seasonality in a given year, variation from year to year, and spatial variation within the nation state. It is imperative that some emphasis be placed on data generation in order to better project for the management of Grenada‘s water security. This analysis indicates the need for additional water catchment, storage and distribution infrastructure, as well as institutional strengthening, in order to meet the future needs of the Grenadian population. Strategic priorities should be adopted to increase water production, increase efficiency, strengthen the institutional framework, and decrease wastage. Grenada has embarked on several initiatives that can be considered strategies toward adaptation to the variabilities associated with climate change. The Government should ensure that these programs be carried out to the optimal levels for reasons described above. The ―no-regrets approach‖ which intimates that measures will be beneficial with or without climate change should be adopted. A study on the Costs of Inaction for the Caribbean in the face of climate change listed Grenada among the countries which would experience significant impacts on GDP between now and 2100 without adaptation interventions. Investment in the water sector is germane to building Grenada‘s capacity to cope with the multivariate impact of changes in the parameters of climate.
Resumo:
The economic impact of climate change on root crop, fisheries and vegetable production for Trinidad and Tobago under the A2 and B2 scenarios were modeled, relative to a baseline ―no climate change‖ case, where the mean temperature and rainfall for a base period of 1980 – 2000 was assumed for the years up to 2050. Production functions were used, using ARMA specifications to correct for serial autocorrelation. For the A2 scenarios, rainfall is expected to fall by approximately 10% relative to the baseline case in the 2020s, but is expected to rise thereafter, until by the 2040s rainfall rises slightly above the mean for the baseline case. For the B2 scenario, rainfall rose slightly above the mean for the baseline case in the current decade, but falls steadily thereafter to approximately 15% by the 2040s. Over the same period, temperature is expected to increase by 1.34C and 1.37C under A2 and B2 respectively. It is expected that any further increase in rainfall should have a deleterious effect on root crop production as a whole, since the above mentioned crops represent the majority of the root crops included in the study. Further expected increases in temperature will result in the ambient temperature being very close to the optimal end of the range for most of these crops. By 2050, the value of yield cumulative losses (2008$) for root crops is expected to be approximately 248.8 million USD under the A2 scenario and approximately 239.4 million USD under the B2 scenario. Relative to the 2005 catch for fish, there will be a decrease in catch potential of 10 - 20% by 2050 relative to 2005 catch potentials, other things remaining constant. By 2050 under the A2 and B2 scenarios, losses in real terms were estimated to be 160.2 million USD and 80.1 million USD respectively, at a 1% discount rate. For vegetables, the mean rainfall exceeds the optimal rainfall range for sweet peppers, hot peppers and melongene. However, while the optimal rainfall level for tomatoes is 3000mm/yr, other vegetables such as sweet peppers, hot peppers and ochroes have very low rainfall requirements (as low as 300 mm/yr). Therefore it is expected that any further decrease in rainfall should have a mixed effect on individual vegetable production. It is expected that any further increase in temperature should have a mixed effect on individual vegetable production, though model results indicated that as a group, an increase in temperature should have a positive impact on vegetable production. By 2050, the value of yield cumulative gains (2008$) for vegetables is expected to be approximately 54.9 million USD under the A2 scenario and approximately 49.1 million USD under the B2 scenario, given a 1% discount rate. For root crops, fisheries and vegetables combined, the cumulative loss under A2 is calculated as approximately 352.8 million USD and approximately 270.8 million USD under B2 by 2050. This is equivalent to 1.37% and 1.05% of the 2008 GDP under the A2 and B2 scenarios respectively by 2050. Sea Level Rise (SLR) by 2050 is estimated to be 0.255 m under A2 and 0.215 m under B2. GIS estimation indicated that for a 0.255 m sea level rise, combined with a 0.5 m high tide, there would be no permanent inundation of agricultural land in Trinidad. The total inundation area is 1.18 km2. This occurs only in the Caroni Watershed, on the western coast of Trinidad, and the areas are outside the Caroni Swamp. Even with an additional rise of 0.5 m to simulate a high rainfall event, the estimated inundated area is 4.67 km2, but with no permanent inundation, though likely to be subject to flooding. Based on eleven (11) evaluation criteria, the top potential adaptation options were identified: 1. Use of water saving irrigation systems and water management systems e.g. drip irrigation; 2. Mainstream climate change issues into agricultural management; 3. Repair/maintain existing dams; 4. Alter crop calendar for short-term crops; 5. Adopt improved technologies for soil conservation; 6. Establish systems of food storage; 7. Promote water conservation – install on-farm water harvesting off roof tops; 8. Design and implement holistic water management plans for all competing uses; 9. Build on- farm water storage (ponds and tanks); 10. Agricultural drainage; and 11. Installation of greenhouses. The most attractive adaptation options, based on the Benefit-Cost Ratio are: (1) Build on- farm water storage such as ponds and tanks (2) Mainstreaming climate change issues into agricultural management and (3) Water Harvesting. However, the options with the highest net benefits are, (in order of priority): (1) Build on- farm water storage such as ponds and tanks, (2) Mainstreaming climate change issues into agricultural management and (3) Use of drip irrigation. Based on the area burnt in Trinidad and Tobago between 2005 and 2009, the average annual loss due to fires is 1717.3 ha. At US$17.41 per carbon credit, this implies that for the total land lost to forest fires on average each year, the opportunity cost of carbon credit revenue is 74.3 million USD. If a teak reforestation programme is undertaken in Trinidad and Tobago, the net benefit of reforestation under a carbon credit programme would be 69 million USD cumulatively to 2050.
Resumo:
This assessment was prepared for the Government of Jamaica following the significant damages to social and economic infrastructure and productive sectors as a result of a period of sustained and unusual rainfall associated with the convergence of a tropical wave over Jamaica and an area of high pressure to the north of the island resulting in periods of heavy and sustained rainfall over the period May 22 – June 2, 2002. A request for technical assistance was directed to the Economic Commission for Latin America and the Caribbean (ECLAC) Subregional Headquarters for the Caribbean, on May 31, by the Planning Institute of Jamaica. In view of the recent training provided by the ECLAC Caribbean team in the use of the ECLAC methodology to a multi-disciplinary group of 58 persons spanning several sectors, it was felt that this event, while most unfortunate, nonetheless provided an opportune moment for the Jamaican “trainees” to utilize the skills transferred and to apply the methodology which had been taught. Consequently, ECLAC fielded a team of five persons a few days after the request had been made , to give the Jamaican counterpart team the opportunity to collect data of the type and using an approach well suited to the preparation of assessments such as this.
Resumo:
A regional envelope curve (REC) of flood flows summarises the current bound on our experience of extreme floods in a region. RECs are available for most regions of the world. Recent scientific papers introduced a probabilistic interpretation of these curves and formulated an empirical estimator of the recurrence interval T associated with a REC, which, in principle, enables us to use RECs for design purposes in ungauged basins. The main aim of this work is twofold. First, it extends the REC concept to extreme rainstorm events by introducing the Depth-Duration Envelope Curves (DDEC), which are defined as the regional upper bound on all the record rainfall depths at present for various rainfall duration. Second, it adapts the probabilistic interpretation proposed for RECs to DDECs and it assesses the suitability of these curves for estimating the T-year rainfall event associated with a given duration and large T values. Probabilistic DDECs are complementary to regional frequency analysis of rainstorms and their utilization in combination with a suitable rainfall-runoff model can provide useful indications on the magnitude of extreme floods for gauged and ungauged basins. The study focuses on two different national datasets, the peak over threshold (POT) series of rainfall depths with duration 30 min., 1, 3, 9 and 24 hrs. obtained for 700 Austrian raingauges and the Annual Maximum Series (AMS) of rainfall depths with duration spanning from 5 min. to 24 hrs. collected at 220 raingauges located in northern-central Italy. The estimation of the recurrence interval of DDEC requires the quantification of the equivalent number of independent data which, in turn, is a function of the cross-correlation among sequences. While the quantification and modelling of intersite dependence is a straightforward task for AMS series, it may be cumbersome for POT series. This paper proposes a possible approach to address this problem.