451 resultados para radioactivity
Resumo:
Radioactivity induced by a 15-MeV proton beam extracted into air was studied at the beam transport line of the 18-MeV cyclotron at the Bern University Hospital (Inselspital). The produced radioactivity was calculated and measured by means of proportional counters located at the main exhaust of the laboratory. These devices were designed for precise assessment of air contamination for radiation protection purposes. The main produced isotopes were 11C, 13N and 14O. Both measurements and calculations correspond to two different irradiation conditions. In the former, protons were allowed to travel for their full range in air. In the latter, they were stopped at the distance of 1.5 m by a beam dump. Radioactivity was measured continuously in the exhausted air starting from 2 min after the end of irradiation. For this reason, the short-lived 14O isotope gave a negligible contribution to the measured activity. Good agreement was found between the measurements and the calculations within the estimated uncertainties. Currents in the range of 120–370 nA were extracted in air for 10–30 s producing activities of 9–22 MBq of 11C and 13N. The total activities for 11C and 13N per beam current and irradiation time for the former and the latter irradiation conditions were measured to be (3.60 ± 0.48) × 10−3 MBq (nA s)−1 and (2.89 ± 0.37) × 10−3 MBq (nA s)−1, respectively.
Resumo:
The chemical element krypton, whose principal source is the atmosphere, had a long-lived radioactive content, in the mid-1940s, of less than 5 dpm per liter of krypton. In the late 1940s, this content had risen to values in the range of 100 dpm per liter. It is now some hundred times higher than the late 1940 values. This radioactivity is the result of the dissolving of nuclear fuel for military and civilian purposes, and the release thereby of the fission product krypton-85 (half-life = 10.71 years, fission yield = 0.2%). The present largest emitter of krypton-85 is the French reprocessing plant at Cap-de-la-Hague.