999 resultados para radial flow
Resumo:
We examine the patterns formed by injecting nitrogen gas into the center of a horizontal, radial Hele-Shaw cell filled with paraffin oil. We use smooth plates and etched plates with lattices having different amounts of defects (010 %). In all cases, a quantitative measure of the pattern ramification shows a regular trend with injection rate and cell gap, such that the dimensionless perimeter scales with the dimensionless time. By adding defects to the lattice, we observe increased branching in the pattern morphologies. However, even in this case, the scaling behavior persists. Only the prefactor of the scaling function shows a dependence on the defect density. For different lattice defect densities, we examine the nature of the different morphology phases.
Resumo:
PURPOSE: To compare 3 different flow targeted magnetization preparation strategies for coronary MR angiography (cMRA), which allow selective visualization of the vessel lumen. MATERIAL AND METHODS: The right coronary artery of 10 healthy subjects was investigated on a 1.5 Tesla MR system (Gyroscan ACS-NT, Philips Healthcare, Best, NL). A navigator-gated and ECG-triggered 3D radial steady-state free-precession (SSFP) cMRA sequence with 3 different magnetization preparation schemes was performed referred to as projection SSFP (selective labeling of the aorta, subtraction of 2 data sets), LoReIn SSFP (double-inversion preparation, selective labeling of the aorta, 1 data set), and inflow SSFP (inversion preparation, selective labeling of the coronary artery, 1 data set). Signal-to-noise ratio (SNR) of the coronary artery and aorta, contrast-to-noise ratio (CNR) between the coronary artery and epicardial fat, vessel length and vessel sharpness were analyzed. RESULTS: All cMRA sequences were successfully obtained in all subjects. Both projection SSFP and LoReIn SSFP allowed for selective visualization of the coronary arteries with excellent background suppression. Scan time was doubled in projection SSFP because of the need for subtraction of 2 data sets. In inflow SSFP, background suppression was limited to the tissue included in the inversion volume. Projection SSFP (SNR(coro): 25.6 +/- 12.1; SNR(ao): 26.1 +/- 16.8; CNR(coro-fat): 22.0 +/- 11.7) and inflow SSFP (SNR(coro): 27.9 +/- 5.4; SNR(ao): 37.4 +/- 9.2; CNR(coro-fat): 24.9 +/- 4.8) yielded significantly increased SNR and CNR compared with LoReIn SSFP (SNR(coro): 12.3 +/- 5.4; SNR(ao): 11.8 +/- 5.8; CNR(coro-fat): 9.8 +/- 5.5; P < 0.05 for both). Longest visible vessel length was found with projection SSFP (79.5 mm +/- 18.9; P < 0.05 vs. LoReIn) whereas vessel sharpness was best in inflow SSFP (68.2% +/- 4.5%; P < 0.05 vs. LoReIn). Consistently good image quality was achieved using inflow SSFP likely because of the simple planning procedure and short scanning time. CONCLUSION: Three flow targeted cMRA approaches are presented, which provide selective visualization of the coronary vessel lumen and in addition blood flow information without the need of contrast agent administration. Inflow SSFP yielded highest SNR, CNR and vessel sharpness and may prove useful as a fast and efficient approach for assessing proximal and mid vessel coronary blood flow, whereas requiring less planning skills than projection SSFP or LoReIn SSFP.
Resumo:
Morphological transitions are analyzed for a radial multiparticle diffusion-limited aggregation process grown under a convective drift. The introduction of a tangential flow changes the morphology of the diffusion-limited structure, into multiarm structures, inclined opposite to the flow, whose limit consists of single arms, when decreasing density. The case of shear flow is also considered. The anisotropy of the patterns is characterized in terms of a tangential correlation function based analysis. Comparison between the simulation results and preliminary experimental results has been done.
Resumo:
PURPOSE: Visualization of coronary blood flow in the right and left coronary system in volunteers and patients by means of a modified inversion-prepared bright-blood coronary magnetic resonance angiography (cMRA) sequence. MATERIALS AND METHODS: cMRA was performed in 14 healthy volunteers and 19 patients on a 1.5 Tesla MR system using a free-breathing 3D balanced turbo field echo (b-TFE) sequence with radial k-space sampling. For magnetization preparation a slab selective and a 2D selective inversion pulse were used for the right and left coronary system, respectively. cMRA images were evaluated in terms of clinically relevant stenoses (< 50 %) and compared to conventional catheter angiography. Signal was measured in the coronary arteries (coro), the aorta (ao) and in the epicardial fat (fat) to determine SNR and CNR. In addition, maximal visible vessel length, and vessel border definition were analyzed. RESULTS: The use of a selective inversion pre-pulse allowed direct visualization of the coronary blood flow in the right and left coronary system. The measured SNR and CNR, vessel length, and vessel sharpness in volunteers (SNR coro: 28.3 +/- 5.0; SNR ao: 37.6 +/- 8.4; CNR coro-fat: 25.3 +/- 4.5; LAD: 128.0 cm +/- 8.8; RCA: 74.6 cm +/- 12.4; Sharpness: 66.6 % +/- 4.8) were slightly increased compared to those in patients (SNR coro: 24.1 +/- 3.8; SNR ao: 33.8 +/- 11.4; CNR coro-fat: 19.9 +/- 3.3; LAD: 112.5 cm +/- 13.8; RCA: 69.6 cm +/- 16.6; Sharpness: 58.9 % +/- 7.9; n.s.). In the patient study the assessment of 42 coronary segments lead to correct identification of 10 clinically relevant stenoses. CONCLUSION: The modification of a previously published inversion-prepared cMRA sequence allowed direct visualization of the coronary blood flow in the right as well as in the left coronary system. In addition, this sequence proved to be highly sensitive regarding the assessment of clinically relevant stenotic lesions.
Resumo:
The radial displacement of a fluid annulus in a rotating circular HeleShaw cell has been investigated experimentally. It has been found that the flow depends sensitively on the wetting conditions at the outer interface. Displacements in a prewet cell are well described by Darcy"s law in a wide range of experimental parameters, with little influence of capillary effects. In a dry cell, however, a more careful analysis of the interfacemotion is required; the interplay between a gradual loss of fluid at the inner interface, and the dependence of capillary forces at the outer interface on interfacial velocity and dynamic contact angle, result in a constant velocity for the interfaces. The experimental results in this case correlate in the form of an empirical scaling relation between the capillary number Ca and a dimensionless group, related to the ratio of centrifugal to capillary forces, which spans about three orders of magnitude in both quantities. Finally, the relative thickness of the coating film left by the inner interface is obtained as a function of Ca.
Resumo:
The flow dynamics of crystal-rich high-viscosity magma is likely to be strongly influenced by viscous and latent heat release. Viscous heating is observed to play an important role in the dynamics of fluids with temperature-dependent viscosities. The growth of microlite crystals and the accompanying release of latent heat should play a similar role in raising fluid temperatures. Earlier models of viscous heating in magmas have shown the potential for unstable (thermal runaway) flow as described by a Gruntfest number, using an Arrhenius temperature dependence for the viscosity, but have not considered crystal growth or latent heating. We present a theoretical model for magma flow in an axisymmetric conduit and consider both heating effects using Finite Element Method techniques. We consider a constant mass flux in a 1-D infinitesimal conduit segment with isothermal and adiabatic boundary conditions and Newtonian and non-Newtonian magma flow properties. We find that the growth of crystals acts to stabilize the flow field and make the magma less likely to experience a thermal runaway. The additional heating influences crystal growth and can counteract supercooling from degassing-induced crystallization and drive the residual melt composition back towards the liquidus temperature. We illustrate the models with results generated using parameters appropriate for the andesite lava dome-forming eruption at Soufriere Hills Volcano, Montserrat. These results emphasize the radial variability of the magma. Both viscous and latent heating effects are shown to be capable of playing a significant role in the eruption dynamics of Soufriere Hills Volcano. Latent heating is a factor in the top two kilometres of the conduit and may be responsible for relatively short-term (days) transients. Viscous heating is less restricted spatially, but because thermal runaway requires periods of hundreds of days to be achieved, the process is likely to be interrupted. Our models show that thermal evolution of the conduit walls could lead to an increase in the effective diameter of flow and an increase in flux at constant magma pressure.
Resumo:
A numerical scheme is presented tor the solution of the shallow water equations in a single radial coordinate. This can prove useful when testing codes for the two-dimensional shallow water equations. The scheme is applied with success to problems involving converging and diverging bores.
Resumo:
In this paper a non-isothermal two-phase model for oil-R134a refrigerant mixture flow is presented to predict the R134a leakage through the radial clearance of rolling piston compressors. The flow is divided in a liquid single-phase region and in a two-phase region, in which the homogeneous model is used to simulate the flow. The refrigerant leakage is determined using the mixture mass flow rate and the refrigerant mass fraction variation along the flow. The results are obtained for inlet pressures varying from 200 to 700 kPa, inlet temperatures ranging from 40 to 60 degrees C, and minimal clearances between 10 and 60 mu m. The results are firstly compared to existing isothermal model data, showing that there is a significant difference between the leakage flow rates predicted by isothermal and non-isothermal models. Finally, a useful general equation for compressor designers is proposed to calculate the refrigerant leakage for a large range of operation conditions. (C) 2012 Elsevier Ltd and IIR. All rights reserved.
Resumo:
O trabalho avaliou, em sementes de soja, as conseqüências qualitativas provenientes da secagem estacionária com distribuição radial de ar, variando o fluxo (26,9, 28,4 e 33,2 m³/minuto/t) e a temperatura do ar insuflado (42, 46 e 50ºC), considerando a posição das sementes na massa (17, 34 e 51 cm em relação ao cilindro de insuflação) e o tempo de secagem (0 a 12 horas, com intervalos de quatro horas). Para tanto, além das determinações das temperaturas e dos teores de água da massa, foi avaliado o desempenho fisiológico das sementes no início e ao final de seis meses de armazenamento. Apesar das vantagens físicas operacionais resultantes da combinação entre o fluxo e a temperatura intermediários (28,4 m³/minuto/t e 46ºC), a qualidade fisiológica foi menos prejudicada nas combinações dos menores fluxos (26,9 e 28,4 m³/minuto/t) com a maior temperatura (50ºC) e do maior fluxo (33,2 m³/minuto/t) com as menores temperaturas (42 e 46ºC); entre estas, levando em conta os aspectos físico-operacionais, a associação de 28,4 m³/minuto/t com 50ºC foi a mais eficiente na retirada de água das sementes. Assim, admitindo os intervalos de fluxo (26,9 a 33,2 m³/minuto/t) e de temperatura (42 a 50ºC) estudados, conclui-se que a elevação na temperatura demanda redução no fluxo e, inversamente, o aumento no fluxo demanda redução na temperatura.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The neutral wire in most power flow software is usually merged into phase wires using Kron's reduction. Since the neutral wire and the ground are not explicitly represented, neutral wire and ground currents and voltages remain unknown. In some applications, like power quality and safety analyses, loss analysis, etc., knowing the neutral wire and ground currents and voltages could be of special interest. In this paper, a general power flow algorithm for three-phase four-wire radial distribution networks, considering neutral grounding, based on backward-forward technique, is proposed. In this novel use of the technique, both the neutral wire and ground are explicitly represented. A problem of three-phase distribution system with earth return, as a special case of a four-wire network, is also elucidated. Results obtained from several case studies using medium- and low-voltage test feeders with unbalanced load, are presented and discussed.
Resumo:
In this paper, it is presented a methodology for three-phase distribution transformer modeling, considering several types of transformer configuration, to be used in algorithms of power flow in three-phase radial distribution networks. The paper provides a detailed discussion about the models and the results from an implementation of the power flow algorithm. The results, taken from three different networks, are presented for several transformer configurations and for voltage regulators as well.
Resumo:
Heat-transfer studies were carried out in a packed bed of glass beads, cooled by the wall, through which air percolated. Tube-to-particle diameter ratios (D/dp) ranged from 1.8 to 55, while the air mass flux ranged from 0.204 to 2.422 kg/m2·s. The outlet bed temperature (TL) was measured by a brass ring-shaped sensor and by aligned thermocouples. The resulting radial temperature profiles differed statistically. Angular temperature fluctuations were observed through measurements made at 72 angular positions. These fluctuations do not follow a normal distribution around the mean for low ratios D/dp. The presence of a restraining screen, as well as the increasing distance between the temperature measuring device and the bed surface, distorts TL. The radial temperature profile at the bed entrance (T0) was measured by a ring-shaped sensor, and T 0 showed to be a function of the radial position, the particle diameter, and the fluid flow rate.
Resumo:
The prediction of the traffic behavior could help to make decision about the routing process, as well as enables gains on effectiveness and productivity on the physical distribution. This need motivated the search for technological improvements in the Routing performance in metropolitan areas. The purpose of this paper is to present computational evidences that Artificial Neural Network ANN could be use to predict the traffic behavior in a metropolitan area such So Paulo (around 16 million inhabitants). The proposed methodology involves the application of Rough-Fuzzy Sets to define inference morphology for insertion of the behavior of Dynamic Routing into a structured rule basis, without human expert aid. The dynamics of the traffic parameters are described through membership functions. Rough Sets Theory identifies the attributes that are important, and suggest Fuzzy relations to be inserted on a Rough Neuro Fuzzy Network (RNFN) type Multilayer Perceptron (MLP) and type Radial Basis Function (RBF), in order to get an optimal surface response. To measure the performance of the proposed RNFN, the responses of the unreduced rule basis are compared with the reduced rule one. The results show that by making use of the Feature Reduction through RNFN, it is possible to reduce the need for human expert in the construction of the Fuzzy inference mechanism in such flow process like traffic breakdown. © 2011 IEEE.
Resumo:
The main goal of the present work is to verify the applicability of the Immersed Boundary Method together with the Virtual Physical Model to solve the flow through automatic valves of hermetic compressors. The valve was simplified to a two-dimensional radial diffuser, with diameter ratio of D/d = 1.5, and simulated for a one cycle of opening and closing process with a imposed velocity of 3.0 cm/s for the reed, dimensionless gap between disks in the range of 0.07 < s/d < 0.10, and inlet Reynolds number equal to 1500. The good results obtained showed that the methodology has great potential as project tool for this type of valve systems. © The Authors, 2011.