885 resultados para quantum cascade laser


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, we propose an n-type vertical transition bound-to-continuum Ge-SiGe quantum cascade structure utilizing electronic quantum wells in the L and F valleys of the Ge layers. The optical transition levels are located in the quantum wells in the L valley. Under a bias of 80 kV/cm, the carriers in the lower level are extracted by miniband transport and L - Gamma tunneling into the subband in the Gamma well of the next period. And then the electrons are injected into the upper level by ultrafast intervalley scattering, which not only effectively increases the tunneling rate and suppresses the thermal backfilling of electrons, but also enhances the injection efficiency of the upper level. The performance of the laser is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-power operation of uncoated 22-mu m-wide quantum cascade lasers (QCLs) emitting at lambda approximate to 4.8 mu m is reported. The emitting region of the QCL structure consists of a 30-period strain-compensated In0.68Ga0.32As/In0.37Al0.63As superlattice. For a 4-mm-long laser in pulsed mode, a peak output power is achieved in excess of 2240mW per facet at 81K with a threshold current density of 0.64kA/cm(2). The effects of varying the cavity lengths from 1 to 4mm on the performances of the QCLs are analysed in detail and the low waveguide loss of only about 1.4 cm(-1) is extracted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High material quality is the basis of quantum cascade lasers (QCLs). Here we report the solid source molecular beam epitaxy (MBE) growth details of realizing high quality of InGaAs/InAlAs QCL structures. Accurate control of material compositions, layer thickness, doping profile, and interface smoothness can be realized by optimizing the growth conditions. Double crystal x-ray diffraction discloses that our grown QCL structures possess excellent periodicity and sharp interfaces. High quality laser wafers are grown in a single epitaxial run. Room temperature continuous-wave (cw) operation of QCLs is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report low-threshold high-temperature operation of 7.4 mu m strain-compensated InGaAs/InAlAs quantum cascade lasers (QCLs). For an uncoated 22-mu m-wide and 2-mm-long laser, the low-threshold current densities, i.e. 0.33 kA/cm(2) at 81 K in pulsed mode and 0.64 kA/cm(2) at 84 K in cw mode, are realized. High-temperature operation of uncoated devices, with a high value of 223 K, is achieved in cw mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the realization of GaAs/AlGaAs quantum cascade lasers with an emission wavelength of 9.1 mu m above the liquid nitrogen temperature. With optimal current injection window and ridge width of 24 and 60 mu m respectively, a peak output power more than 500 mW is achieved in pulsed mode operation. A low threshold current density J(th) = 2.6 kA/cm(2) gives the devices good lasing characteristics. In a drive frequency of 1 kHz, the laser operates up to 20% duty cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the realization of quantum cascade (QC) lasers based on strain-compensated InxGa(1-x)As/In(y)A((1-y))As grown on InP substrates using molecular beam epitaxy. X-ray diffraction and cross section transmission electron microscopy have been used to ascertain the quality of the QC laser materials. Quasi-continuous wave lasing at lambda approximate to 3.54-3.7 mum at room temperature was achieved. For a laser with 1.6 mm cavity length and 20 mum ridge-waveguide width,quasi-continuous wave lasing at 34 degreesC persists for more than 30 min, with a maximum power of 11.4 mW and threshold current density of 1.2 kA cm(-2), both record values for QC lasers of comparable wavelength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-power strain-compensated In1-xGaxAs/ln(1-y)Al(y)As quantum cascade lasers (lambda similar to 5.5 mu m) are demonstrated. Peak power at least 1.2W per facet for a 32 mu mx2mm uncoated laser stored in ambient condition for 240 days, is obtained at 80 K. Considering the collection efficiency of 60%, the actual output power is 4W at this temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a strain-compensated InP-based InGaAs/InAlAs photovoltaic quantum cascade detector grown by solid source molecular beam epitaxy. The detector is based on a vertical intersubband transition and electron transfer on a cascade of quantum levels which is designed to provide longitudinal optical phonon extraction stairs. By careful structure design and growth, the whole epilayer has a residual strain toward InP substrate of only -2.8 x 10(-4). A clear narrow band detection spectrum centered at 4.5 mu m has been observed above room temperature for a device with 200 x 200 mu m(2) square mesa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a study on the facet damage profile of quantum cascade lasers (QCLs). Conspicuous cascade half-loop damage strips on front facet are observed when QCLs catastrophically failed. Due to the large difference on thermal conductivities between active region and the substrate, dominant heat is compulsively driven to the substrate. Abundant heat accumulation and dissipation on substrate build large temperature gradient and thermal lattice mismatch. Thermal-induced stress due to sequential mismatch leads to the occurrence of the multistep damages on front facet. Good agreement is achieved between the observed locations of damaged strips and the calculated results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method to experimentally characterize the gain filter and calculate a corresponding parabolic gain bandwidth of lasers that are described by "class A" dynamics by solving the master equation of spectral condensation for Gaussian spectra. We experimentally determine the gain filter, with an equivalent parabolic gain bandwidth of up to 51 nm, for broad-band InGaAs/GaAs quantum well gain surface-emitting semiconductor laser structures capable of producing pulses down to 60 fs width when mode-locked with an optical Stark saturable absorber mirror. © 2010 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: