994 resultados para quantifying changes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton physiology at the LGM. Measured changes in carbon-13 and carbon-14, as well as a qualitative reconstruction of the change in ocean carbon export are used to evaluate the results. Overall, we find that while a reduction in ocean ventilation at the LGM is necessary to reproduce carbon-13 and carbon-14 observations, this circulation results in a low net sink for atmospheric CO2. In contrast, while biogeochemical processes contribute little to carbon isotopes, we propose that most of the change in atmospheric CO2 was due to such factors. However, the lesser role for circulation means that when all plausible factors are accounted for, most of the necessary CO2 change remains to be explained. This presents a serious challenge to our understanding of the mechanisms behind changes in the global carbon cycle during the geologic past.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using sunspot observations from Greenwich and Mount Wilson, we show that the latitudinal spread of sunspot groups has increased since 1874, in a manner that closely mirrors the long-term (similar to 100 year) changes in the coronal source flux, F-s, as inferred from geomagnetic activity. This latitude spread is shown to be well correlated with the flux emergence rate required by the model of the coronal source flux variation by Solanki er al. [2000]. The time constant for the decay of this open flux is found to be 3.6 +/-0.8 years. Using this value, and quantifying the photospheric flux emergence rate using the latitudinal spread of sunspot groups, the model reproduces the observed coronal source flux variation. The ratio of the 100-year drift to the solar cycle amplitude for the flux emergence rate is found to be half of the same ratio for F-s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The LMD AGCM was iteratively coupled to the global BIOME1 model in order to explore the role of vegetation-climate interactions in response to mid-Holocene (6000 y BP) orbital forcing. The sea-surface temperature and sea-ice distribution used were present-day and CO2 concentration was pre-industrial. The land surface was initially prescribed with present-day vegetation. Initial climate “anomalies” (differences between AGCM results for 6000 y BP and control) were used to drive BIOME1; the simulated vegetation was provided to a further AGCM run, and so on. Results after five iterations were compared to the initial results in order to identify vegetation feedbacks. These were centred on regions showing strong initial responses. The orbitally induced high-latitude summer warming, and the intensification and extension of Northern Hemisphere tropical monsoons, were both amplified by vegetation feedbacks. Vegetation feedbacks were smaller than the initial orbital effects for most regions and seasons, but in West Africa the summer precipitation increase more than doubled in response to changes in vegetation. In the last iteration, global tundra area was reduced by 25% and the southern limit of the Sahara desert was shifted 2.5 °N north (to 18 °N) relative to today. These results were compared with 6000 y BP observational data recording forest-tundra boundary changes in northern Eurasia and savana-desert boundary changes in northern Africa. Although the inclusion of vegetation feedbacks improved the qualitative agreement between the model results and the data, the simulated changes were still insufficient, perhaps due to the lack of ocean-surface feedbacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is projected to cause substantial alterations in vegetation distribution, but these have been given little attention in comparison to land-use in the Representative Concentration Pathway (RCP) scenarios. Here we assess the climate-induced land cover changes (CILCC) in the RCPs, and compare them to land-use land cover change (LULCC). To do this, we use an ensemble of simulations with and without LULCC in earth system model HadGEM2-ES for RCP2.6, RCP4.5 and RCP8.5. We find that climate change causes an expansion poleward of vegetation that affects more land area than LULCC in all of the RCPs considered here. The terrestrial carbon changes from CILCC are also larger than for LULCC. When considering only forest, the LULCC is larger, but the CILCC is highly variable with the overall radiative forcing of the scenario. The CILCC forest increase compensates 90% of the global anthropogenic deforestation by 2100 in RCP8.5, but just 3% in RCP2.6. Overall, bigger land cover changes tend to originate from LULCC in the shorter term or lower radiative forcing scenarios, and from CILCC in the longer term and higher radiative forcing scenarios. The extent to which CILCC could compensate for LULCC raises difficult questions regarding global forest and biodiversity offsetting, especially at different timescales. This research shows the importance of considering the relative size of CILCC to LULCC, especially with regard to the ecological effects of the different RCPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in understanding have made it possible to relate global precipitation changes directly to emissions of particular gases and aerosols that influence climate. Using these advances, new indices are developed here called the Global Precipitation-change Potential for pulse (GPP_P) and sustained (GPP_S) emissions, which measure the precipitation change per unit mass of emissions. The GPP can be used as a metric to compare the effects of different emissions. This is akin to the global warming potential (GWP) and the global temperature-change potential (GTP) which are used to place emissions on a common scale. Hence the GPP provides an additional perspective of the relative or absolute effects of emissions. It is however recognised that precipitation changes are predicted to be highly variable in size and sign between different regions and this limits the usefulness of a purely global metric. The GPP_P and GPP_S formulation consists of two terms, one dependent on the surface temperature change and the other dependent on the atmospheric component of the radiative forcing. For some forcing agents, and notably for CO2, these two terms oppose each other – as the forcing and temperature perturbations have different timescales, even the sign of the absolute GPP_P and GPP_S varies with time, and the opposing terms can make values sensitive to uncertainties in input parameters. This makes the choice of CO2 as a reference gas problematic, especially for the GPP_S at time horizons less than about 60 years. In addition, few studies have presented results for the surface/atmosphere partitioning of different forcings, leading to more uncertainty in quantifying the GPP than the GWP or GTP. Values of the GPP_P and GPP_S for five long- and short-lived forcing agents (CO2, CH4, N2O, sulphate and black carbon – BC) are presented, using illustrative values of required parameters. The resulting precipitation changes are given as the change at a specific time horizon (and hence they are end-point metrics) but it is noted that the GPPS can also be interpreted as the time-integrated effect of a pulse emission. Using CO2 as a references gas, the GPP_P and GPP_S for the non-CO2 species are larger than the corresponding GTP values. For BC emissions, the atmospheric forcing is sufficiently strong that the GPP_S is opposite in sign to the GTP_S. The sensitivity of these values to a number of input parameters is explored. The GPP can also be used to evaluate the contribution of different emissions to precipitation change during or after a period of emissions. As an illustration, the precipitation changes resulting from emissions in 2008 (using the GPP_P) and emissions sustained at 2008 levels (using the GPP_S) are presented. These indicate that for periods of 20 years (after the 2008 emissions) and 50 years (for sustained emissions at 2008 levels) methane is the dominant driver of positive precipitation changes due to those emissions. For sustained emissions, the sum of the effect of the five species included here does not become positive until after 50 years, by which time the global surface temperature increase exceeds 1 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim. One of the major causes of chronic venous disease is venous reflux, the identification and quantification of which are important for diagnosis. Duplex scanning allows for the detection and quantification of reflux in individual veins. Evaluation of the great saphenous vein in primary varicosis is necessary for its preservation. Objective of the study is to evaluate a possible correlation between the intensity of reflux at the saphenofemoral junction, diameter alterations of the incompetent great saphenous vein and the practical effect of such correlation. Also to compare the clinical severity of the CEAP classification with such parameters.Methods. Three hundred limbs were submitted to duplex evaluation of their insufficient saphenous veins. Vein diameter was measured on five different points. Velocity and flow at reflux peak and reflux time were determined. The saphenous vein's diameters were correlated with velocity, flow and time. The three latter parameters and diameters were compared with clinical severity according to CEAP.Results. Correlation was found between the saphenous vein's diameters, velocity and flow. No correlation was observed between time and diameter in the thigh's upper and middle thirds. When comparing diameter, velocity and flow with CEAP clinical severity classification, an association was observed. The correlation between reflux time with clinical severity was weak.Conclusion. Reflux time is a good parameter for identifying the presence of reflux, but not for quantifying it. Velocity and peak flow were better parameters for evaluating reflux intensity as they were correlated with great saphenous vein alterations, and were associated with the disease's clinical severity. [Int Angiol 2010;29:323-30]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Entstehung eines Marktpreises für einen Vermögenswert kann als Superposition der einzelnen Aktionen der Marktteilnehmer aufgefasst werden, die damit kumulativ Angebot und Nachfrage erzeugen. Dies ist in der statistischen Physik mit der Entstehung makroskopischer Eigenschaften vergleichbar, die von mikroskopischen Wechselwirkungen zwischen den beteiligten Systemkomponenten hervorgerufen werden. Die Verteilung der Preisänderungen an Finanzmärkten unterscheidet sich deutlich von einer Gaußverteilung. Dies führt zu empirischen Besonderheiten des Preisprozesses, zu denen neben dem Skalierungsverhalten nicht-triviale Korrelationsfunktionen und zeitlich gehäufte Volatilität zählen. In der vorliegenden Arbeit liegt der Fokus auf der Analyse von Finanzmarktzeitreihen und den darin enthaltenen Korrelationen. Es wird ein neues Verfahren zur Quantifizierung von Muster-basierten komplexen Korrelationen einer Zeitreihe entwickelt. Mit dieser Methodik werden signifikante Anzeichen dafür gefunden, dass sich typische Verhaltensmuster von Finanzmarktteilnehmern auf kurzen Zeitskalen manifestieren, dass also die Reaktion auf einen gegebenen Preisverlauf nicht rein zufällig ist, sondern vielmehr ähnliche Preisverläufe auch ähnliche Reaktionen hervorrufen. Ausgehend von der Untersuchung der komplexen Korrelationen in Finanzmarktzeitreihen wird die Frage behandelt, welche Eigenschaften sich beim Wechsel von einem positiven Trend zu einem negativen Trend verändern. Eine empirische Quantifizierung mittels Reskalierung liefert das Resultat, dass unabhängig von der betrachteten Zeitskala neue Preisextrema mit einem Anstieg des Transaktionsvolumens und einer Reduktion der Zeitintervalle zwischen Transaktionen einhergehen. Diese Abhängigkeiten weisen Charakteristika auf, die man auch in anderen komplexen Systemen in der Natur und speziell in physikalischen Systemen vorfindet. Über 9 Größenordnungen in der Zeit sind diese Eigenschaften auch unabhängig vom analysierten Markt - Trends, die nur für Sekunden bestehen, zeigen die gleiche Charakteristik wie Trends auf Zeitskalen von Monaten. Dies eröffnet die Möglichkeit, mehr über Finanzmarktblasen und deren Zusammenbrüche zu lernen, da Trends auf kleinen Zeitskalen viel häufiger auftreten. Zusätzlich wird eine Monte Carlo-basierte Simulation des Finanzmarktes analysiert und erweitert, um die empirischen Eigenschaften zu reproduzieren und Einblicke in deren Ursachen zu erhalten, die zum einen in der Finanzmarktmikrostruktur und andererseits in der Risikoaversion der Handelsteilnehmer zu suchen sind. Für die rechenzeitintensiven Verfahren kann mittels Parallelisierung auf einer Graphikkartenarchitektur eine deutliche Rechenzeitreduktion erreicht werden. Um das weite Spektrum an Einsatzbereichen von Graphikkarten zu aufzuzeigen, wird auch ein Standardmodell der statistischen Physik - das Ising-Modell - auf die Graphikkarte mit signifikanten Laufzeitvorteilen portiert. Teilresultate der Arbeit sind publiziert in [PGPS07, PPS08, Pre11, PVPS09b, PVPS09a, PS09, PS10a, SBF+10, BVP10, Pre10, PS10b, PSS10, SBF+11, PB10].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Housing development has increased dramatically in the Midwest with a high concentration around lakes. This development plays an important role in the economy of Northwoods communities. However, poorly planned development has the potential to alter a lake’s ecological processes and integrity. Studies have documented the impacts of housing developments and reported dramatic, negative changes to the flora and fauna in Vilas County, Wisconsin. One component of my research included examining the previously unstudied effects of residential development on the abundance and diversity of medium to large-bodied mammals using lakeshore ecosystems. The results suggest that a higher diversity of mammals were detected on low-development lakes. Coyotes were the most numerous species detected with the majority encountered on low-development lakes. White-tailed deer and red fox were more abundant on high-development lakes as compared to low-development lakes. I concluded that high-development lakes are having a negative affect on the mammal community in this area. Recently, lakeshore restoration has occurred on privately owned property in Vilas County and elsewhere in the Northwoods, but little is known about the benefit, if any, from these restoration efforts. A partnership between government agencies and academia has launched a long-term research project investigating the ecological benefits of lakeshore restoration. I investigated the impacts of using down woody material (DWM) to increase the success of restoration projects. Specifically, I tested the hypothesis that down woody material would reduce the variation in soil temperature, retain soil moisture, and improve plant survival and growth rates. I randomly assigned three DWM coverage treatments (0%, 25%, and 50%) on 3 m × 3 m experimental plots (n = 10 per treatment). The mean maximum soil temperature, temperature variation, and change in soil moisture content were significantly lower in the 25% and 50% DWM plots. I found no difference in survival, but snowberry (Symphoricarpos albus) and Barren strawberry (Waldstenia fragaroides) growth was significant greater in the 25% and 50% DWM plots. DWM addition can be considered a useful technique to physically manipulate soil properties and improve plant growth. Finally, I provided baseline data on vegetation structure, bird and small mammal community diversity and abundance for three lakes targeted for restoration efforts and their paired reference lakes. This study is one of the first of it kind in the area and continuing to document the degree of change in subsequent years will provide insight into the way the local ecosystem functions and how ecological communities are structured.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Resonance frequency analysis (RFA) offers the opportunity to monitor the osseointegration of an implant in a simple, noninvasive way. A better comprehension of the relationship between RFA and parameters related to bone quality would therefore help clinicians improve diagnoses. In this study, a bone analog made from polyurethane foam was used to isolate the influences of bone density and cortical thickness in RFA. MATERIALS AND METHODS: Straumann standard implants were inserted in polyurethane foam blocks, and primary implant stability was measured with RFA. The blocks were composed of two superimposed layers with different densities. The top layer was dense to mimic cortical bone, whereas the bottom layer had a lower density to represent trabecular bone. Different densities for both layers and different thicknesses for the simulated cortical layer were tested, resulting in eight different block combinations. RFA was compared with two other mechanical evaluations of primary stability: removal torque and axial loading response. RESULTS: The primary stability measured with RFA did not correlate with the two other methods, but there was a significant correlation between removal torque and the axial loading response (P < .005). Statistical analysis revealed that each method was sensitive to different aspects of bone quality. RFA was the only method able to detect changes in both bone density and cortical thickness. However, changes in trabecular bone density were easier to distinguish with removal torque and axial loading than with RFA. CONCLUSIONS: This study shows that RFA, removal torque, and axial loading are sensitive to different aspects of the bone-implant interface. This explains the absence of correlation among the methods and proves that no standard procedure exists for the evaluation of primary stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tree water deficit estimated by measuring water-related changes in stem radius (DeltaW) was compared with tree water deficit estimated from the output of a simple, physiologically reasonable model (DeltaW(E)), with soil water potential (Psi(soil)) and atmospheric vapor pressure deficit (VPD) as inputs. Values of DeltaW were determined by monitoring stem radius changes with dendrometers and detrending the results for growth, We followed changes in DeltaW and DeltaW(E) in Pinus sylvestris L. and Quercus pubescens Willd. over 2 years at a dry site (2001-2002; Salgesch, Wallis) and in Picea abies (L.) Karst. for 1 year at a wet site (1998; Davos, Graubuenden) in the Swiss Alps. The seasonal courses of DeltaW in deciduous species and in conifers at the same site were similar and could be largely explained by variation in DeltaW(E). This finding strongly suggests that DeltaW, despite the known species-specific differences in stomatal response to microclimate, is mainly explained by a combination of atmospheric and soil conditions. Consequently, we concluded that trees are unable to maintain any particular DeltaW. Either Psi(soil) or VPD alone provided poorer estimates of AWthan a model incorporating both factors. As a first approximation of DeltaW(E), Psi(soil) can be weighted so that the negative mean Psi(soil) reaches 65 to 75% of the positive mean daytime VPD over a season (Q. pubescens: similar to65%, P abies: similar to70%, P sylvestris: similar to75%). The differences in DeltaW among species can be partially explained by a different weighting of Psi(soil) against VPD. The DeltaW of P. sylvestris was more dependent on Psi(soil) than that of Q. pubescens, but less than that of P. abies, and was less dependent on VPD than that of P. abies and Q. pubescens. The model worked well for P. abies at the wet site and for Q. pubescens and P. sylvestris at the dry site, and may be useful for estimating water deficit in other tree species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To quantify the coinciding improvement in the clinical diagnosis of sepsis, its documentation in the electronic health records, and subsequent medical coding of sepsis for billing purposes in recent years. METHODS We examined 98,267 hospitalizations in 66,208 patients who met systemic inflammatory response syndrome criteria at a tertiary care center from 2008 to 2012. We used g-computation to estimate the causal effect of the year of hospitalization on receiving an International Classification of Diseases, Ninth Revision, Clinical Modification discharge diagnosis code for sepsis by estimating changes in the probability of getting diagnosed and coded for sepsis during the study period. RESULTS When adjusted for demographics, Charlson-Deyo comorbidity index, blood culture frequency per hospitalization, and intensive care unit admission, the causal risk difference for receiving a discharge code for sepsis per 100 hospitalizations with systemic inflammatory response syndrome, had the hospitalization occurred in 2012, was estimated to be 3.9% (95% confidence interval [CI], 3.8%-4.0%), 3.4% (95% CI, 3.3%-3.5%), 2.2% (95% CI, 2.1%-2.3%), and 0.9% (95% CI, 0.8%-1.1%) from 2008 to 2011, respectively. CONCLUSIONS Patients with similar characteristics and risk factors had a higher of probability of getting diagnosed, documented, and coded for sepsis in 2012 than in previous years, which contributed to an apparent increase in sepsis incidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past decade the use of stable isotopes to investigate transport pathways of nutrients in aquatic ecosystems has contributed new understanding and knowledge to many aspects of ecology; from the trophic structure of food webs to the spatial extent of nutrient discharges. At the same time aquatic monitoring programs around the world have become more interested in quantifying ecosystem health rather than simply measuring the physical and chemical properties of water (nutrients, pH, temperature and turbidity). A novel technique was initiated in 1998 as part of the development of the Ecosystem Health Monitoring Program in S.E. Queensland Australia (EHMP) using changes in the 15N value of the red macroalgae Catenella nipae, to indicate regions impacted by sewage nitrogen. Sewage plume mapping, using the 15N of C. nipae, has demonstrated that over the past 5 years there has been a large reduction in the magnitude and spatial extent of 15N enrichment at sites close to sewage treatment plants (STPs) discharging into Moreton Bay. This presentation will discuss how the 15N signatures of the C. nipae in the plume at the mouth of the Brisbane River have declined since it was first sampled in 1998 and will evaluate causes that may be responsible for these variations. A series of laboratory experiments were conducted to investigate how environmental conditions influence the 15N signature of C, nipae over the incubation period. These data will be used to discuss the observed in situ decline in 15N in an attempt to determine if the reduction can be attributed solely to improvements in the wastewater discharge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid global loss of biodiversity has led to a proliferation of systematic conservation planning methods. In spite of their utility and mathematical sophistication, these methods only provide approximate solutions to real-world problems where there is uncertainty and temporal change. The consequences of errors in these solutions are seldom characterized or addressed. We propose a conceptual structure for exploring the consequences of input uncertainty and oversimpli?ed approximations to real-world processes for any conservation planning tool or strategy. We then present a computational framework based on this structure to quantitatively model species representation and persistence outcomes across a range of uncertainties. These include factors such as land costs, landscape structure, species composition and distribution, and temporal changes in habitat. We demonstrate the utility of the framework using several reserve selection methods including simple rules of thumb and more sophisticated tools such as Marxan and Zonation. We present new results showing how outcomes can be strongly affected by variation in problem characteristics that are seldom compared across multiple studies. These characteristics include number of species prioritized, distribution of species richness and rarity, and uncertainties in the amount and quality of habitat patches. We also demonstrate how the framework allows comparisons between conservation planning strategies and their response to error under a range of conditions. Using the approach presented here will improve conservation outcomes and resource allocation by making it easier to predict and quantify the consequences of many different uncertainties and assumptions simultaneously. Our results show that without more rigorously generalizable results, it is very dif?cult to predict the amount of error in any conservation plan. These results imply the need for standard practice to include evaluating the effects of multiple real-world complications on the behavior of any conservation planning method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of endogenous rhythms in the photoperiodic control of the annual reproduction cycle in female rainbow trout was investigated. The effect of photoperiod regimes on the different stages of maturation was assessed by recording the timing of ovulation and from quantifying associated changes in serum oestradiol-17,testosterone and total calcium. Maintained under constant 6L:18D and constant temperature for up to four years, rainbow trout exhibited an endogenous rhythm of maturation with a periodicity of approximately one year. This rhythm of maturation appears to be driven by an autonomous circannual oscillator or clock which can be dissociated from the neuroendocrine mechanisms controlling gonadal maturation. Under conditions of constant 18L:6D or LL the periodicity of the maturation rhythm was 5.5-6 months; it is suggested that this periodicity may be caused by a splitting or uncoupling of at least two circannual clocks involved in the control of maturation. Abrupt changes in the length of the photoperiod act as a zeitgeber to entrain the endogenous rhythm of maturation. Whether the timing of maturation is advanced or delayed depends primarily on the direction of the change in photoperiod and its timing in relation to the phase of the rhythm, with the magnitude of the alteration in photoperiod having only a supplementary effect. The effect of specific changes in photoperiod on the entrainment of the maturation cycle can be described in terms of a phase-response curve. Photic information is transduced, probably by the pineal gland, into a daily rhythm of melatonin; exposure of rainbow trout to skeleton and resonance photoperiod regimes indicated that daylength measurement is effected by endogenous circadian clock(s) rather than by hour-glass mechanisms. A gating mechanism is closely associated with the circannual clock which determines the timing of onset of maturation in virgin female rainbow trout, only allowing fish that have attained a threshold stage of development to undergo gonadal maturation. Collectively the results support the hypothesis that the female rainbow trout exhibits an endogenous circannual rhythm of maturation which can be entrained by changes in photoperiod.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Parkinson’s disease (PD) is an incurable neurological disease with approximately 0.3% prevalence. The hallmark symptom is gradual movement deterioration. Current scientific consensus about disease progression holds that symptoms will worsen smoothly over time unless treated. Accurate information about symptom dynamics is of critical importance to patients, caregivers, and the scientific community for the design of new treatments, clinical decision making, and individual disease management. Long-term studies characterize the typical time course of the disease as an early linear progression gradually reaching a plateau in later stages. However, symptom dynamics over durations of days to weeks remains unquantified. Currently, there is a scarcity of objective clinical information about symptom dynamics at intervals shorter than 3 months stretching over several years, but Internet-based patient self-report platforms may change this. Objective: To assess the clinical value of online self-reported PD symptom data recorded by users of the health-focused Internet social research platform PatientsLikeMe (PLM), in which patients quantify their symptoms on a regular basis on a subset of the Unified Parkinson’s Disease Ratings Scale (UPDRS). By analyzing this data, we aim for a scientific window on the nature of symptom dynamics for assessment intervals shorter than 3 months over durations of several years. Methods: Online self-reported data was validated against the gold standard Parkinson’s Disease Data and Organizing Center (PD-DOC) database, containing clinical symptom data at intervals greater than 3 months. The data were compared visually using quantile-quantile plots, and numerically using the Kolmogorov-Smirnov test. By using a simple piecewise linear trend estimation algorithm, the PLM data was smoothed to separate random fluctuations from continuous symptom dynamics. Subtracting the trends from the original data revealed random fluctuations in symptom severity. The average magnitude of fluctuations versus time since diagnosis was modeled by using a gamma generalized linear model. Results: Distributions of ages at diagnosis and UPDRS in the PLM and PD-DOC databases were broadly consistent. The PLM patients were systematically younger than the PD-DOC patients and showed increased symptom severity in the PD off state. The average fluctuation in symptoms (UPDRS Parts I and II) was 2.6 points at the time of diagnosis, rising to 5.9 points 16 years after diagnosis. This fluctuation exceeds the estimated minimal and moderate clinically important differences, respectively. Not all patients conformed to the current clinical picture of gradual, smooth changes: many patients had regimes where symptom severity varied in an unpredictable manner, or underwent large rapid changes in an otherwise more stable progression. Conclusions: This information about short-term PD symptom dynamics contributes new scientific understanding about the disease progression, currently very costly to obtain without self-administered Internet-based reporting. This understanding should have implications for the optimization of clinical trials into new treatments and for the choice of treatment decision timescales.