729 resultados para protons
Resumo:
The comparative study of the voltammetry of H[NTf2], HCl and H[AuCl4] in [C(4)mim][NTf2] has provided an insight into the influence of protons on the reduction of [AuCl4](-) at Au, Pt or glassy carbon (GC) electrodes, and has allowed the identification of an unprecedented proton-induced electroless deposition of Au on relatively inert GC surfaces. For the first time, clear evidence of the quantitative formation of [HCl2](-) has been obtained in HCl/[C(4)mim][NTf2] mixtures, and the electrochemical behavior of these mixtures analyzed. In particular, a significant shift of the dissociation equilibrium toward the formation of chloride and the solvated proton (H-IL(+)), following electrochemical reduction of H-IL(+) has been observed in the time-scale of the experiments.
Resumo:
Hi-fi mapping: Multiplexing fluorescent sensors that simultaneously target proton concentration and polarity move to micellar nanospaces, self-regulate their positions, and report their pKa values and wavelengths, which are controlled by their local environments. Such sensory functions enable maps of proton gradients near micellar membranes to be drawn.
Resumo:
By using a thick (250 mu m) target with 350 mu m radius of curvature, the intense proton beam driven by a petawatt laser is focused at a distance of similar to 1 mm from the target for all detectable energies up to similar to 25 MeV. The thickness of the foil facilitates beam focusing as it suppresses the dynamic evolution of the beam divergence caused by peaked electron flux distribution at the target rear side. In addition, reduction in inherent beam divergence due to the target thickness relaxes the curvature requirement for short-range focusing. Energy resolved mapping of the proton beam trajectories from mesh radiographs infers the focusing and the data agree with a simple geometrical modeling based on ballistic beam propagation. © 2011 American Physical Society
Resumo:
The scaling of the flux and maximum energy of laser-driven sheath-accelerated protons has been investigated as a function of laser pulse energy in the range of 15-380 mJ at intensities of 10(16)-10(18) W/cm(2). The pulse duration and target thickness were fixed at 40 fs and 25 nm, respectively, while the laser focal spot size and drive energy were varied. Our results indicate that while the maximum proton energy is dependent on the laser energy and laser spot diameter, the proton flux is primarily related to the laser pulse energy under the conditions studied here. Our measurements show that increasing the laser energy by an order of magnitude results in a more than 500-fold increase in the observed proton flux. Whereas, an order of magnitude increase in the laser intensity generated by decreasing the laser focal spot size, at constant laser energy, gives rise to less than a tenfold increase in observed proton flux.
Resumo:
The use of schemes involving multiple laser pulses to enhance and control the properties of beams of protons accelerated in ultra-intense laser irradiation of planar foil targets is discussed. Specifically, the schemes include the use of a second laser pulse to produce and control preplasma expansion of the target to enhance energy coupling to the proton beam; the use of a second laser pulse to drive shock deformation of the target to change the direction of the proton beam; and a scheme involving dual high intensity laser pulses to change the properties of the sheath field, with the aim of modifying the proton energy spectrum. An overview of our recent experimental and theoretical results is given. The overall aim of this work is to determine the extent to which the properties of the sheath-accelerated proton beam can be optically controlled, to enable beam delivery at high repetition rates. To cite this article: D.C. Carroll et al., C. R. Physique 10 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Nuclear activation has been observed in materials exposed to the ablated plasma generated from high intensity laser-solid interactions (at focused intensities up to 2x10(19) W/cm(2)) and is produced by protons having energies up to 30 MeV. The energy spectrum of the protons is determined from these activation measurements and is found to be consistent with other ion diagnostics. The possible development of this technique for