992 resultados para protease production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Expression of matrix metalloproteinase-2 (MMP-2), the 72-kd type IV collagenase/gelatinase, by cancer cells has been implicated in metastasis through cancer cell invasion of basement membranes mediated by degradation of collagen IV. However, the abundance of this latent proenzyme in normal tissues and fluids suggests that MMP-2 proenzyme utilization is limited by its physiological activation rather than expression alone. We previously reported activation of this proenzyme by normal and malignant fibroblastoid cells cultured on collagen I (vitrogen) gels. Purpose: Our purposes in this study were 1) to determine whether MMP-2 activation is restricted to the more invasive human breast cancer cell lines and 2) to localize the activating mechanism. Methods: Zymography was used to monitor MMP-2 activation through detection of latent MMP-2 (72 kd) and mature species of smaller molecular weight (59 or 62 kd). Human breast cancer cell lines cultured on plastic, vitrogen, and other matrices were thus screened for MMP- 2 activation. Collagen I-cultured cells were exposed to cycloheximide, a protein synthesis inhibitor, or to protease inhibitors to determine the nature of the MMP-2-activating mechanism. Triton X-114 (TX-114) detergent extracts from cells cultured on collagen I or plastic were incubated with latent MMP-2 and analyzed by zymography to localize the MMP-2 activator. Results: MMP-2 activation was only induced by collagen I culture in the more aggressive, highly invasive estrogen receptor-negative, vimentin-positive human breast cancer cell lines (Hs578T, MDA-MB-436, BT549, MDA-MB-231, MDA- MB-435, MCF-7(ADR)) and was independent of MMP-2 production. MMP-2 activation was detected in cells cultured on collagen I gels but not in those cultured on gelatin gels, Matrigel, or thin layers of collagen I or IV, gelatin, or fibronectin. Collagen-induced activation was specific for the enzyme species MMP-2, since MMP-9, the 92-kd type IV collagenase/gelatinase, was not activatable under similar conditions. MMP-2 activation was inhibited by cycloheximide and was sensitive to a metalloproteinase inhibitor but not to aspartyl, serine, or cysteinyl protease inhibitors. MMP-2 activation was detected in the hydrophobic, plasma membrane-enriched, TX-114 extracts from invasive collagen I-cultured cells. Conclusion: Collagen I-induced MMP-2 activation is restricted to highly invasive estrogen receptor-negative, vimentin-positive human breast cancer cell lines, is independent of MMP-2 production, and is associated with metastatic potential. Our findings are consistent with plasma membrane localization of the activator. Implications: The MMP-2 activation mechanism may represent a new target for diagnosis, prognosis, and treatment of human breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Chlamydia (C.) trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Genetic approaches to investigate C. trachomatis have been only recently developed due to the organism’s intracellular developmental cycle. HtrA is a critical stress response serine protease and chaperone for many bacteria and in C. trachomatis has been previously shown to be important for heat stress and the replicative phase of development using a chemical inhibitor of the CtHtrA activity. In this study, chemically-induced SNVs in the cthtrA gene that resulted in amino acid substitutions (A240V, G475E, and P370L) were identified and characterized. Methods SNVs were initially biochemically characterized in vitro using recombinant protein techniques to confirm a functional impact on proteolysis. The C. trachomatis strains containing the SNVs with marked reductions in proteolysis were investigated in cell culture to identify phenotypes that could be linked to CtHtrA function. Results The strain harboring the SNV with the most marked impact on proteolysis (cthtrAP370L) was detected to have a significant reduction in the production of infectious elementary bodies. Conclusions This provides genetic evidence that CtHtrA is critical for the C. trachomatis developmental cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study focuses on the translational strategies of Cocksfoot mottle virus (CfMV, genus Sobemovirus), which infects monocotyledonous plants. CfMV RNA lacks the 5'cap and the 3'poly(A) tail that ensure efficient translation of cellular messenger RNAs (mRNAs). Instead, CfMV RNA is covalently linked to a viral protein VPg (viral protein, genome-linked). This indicates that the viral untranslated regions (UTRs) must functionally compensate for the lack of the cap and poly(A) tail. We examined the efficacy of translation initiation in CfMV by comparing it to well-studied viral translational enhancers. Although insertion of the CfMV 5'UTR (CfMVe) into plant expression vectors improved gene expression in barley more than the other translational enhancers examined, studies at the RNA level showed that CfMVe alone or in combination with the CfMV 3'UTR did not provide the RNAs translational advantage. Mutation analysis revealed that translation initiation from CfMVe involved scanning. Interestingly, CfMVe also promoted translation initiation from an intercistronic position of dicistronic mRNAs in vitro. Furthermore, internal initiation occurred with similar efficacy in translation lysates that had reduced concentrations of eukaryotic initiation factor (eIF) 4E, suggesting that initiation was independent of the eIF4E. In contrast, reduced translation in the eIF4G-depleted lysates indicated that translation from internally positioned CfMVe was eIF4G-dependent. After successful translation initiation, leaky scanning brings the ribosomes to the second open reading frame (ORF). The CfMV polyprotein is produced from this and the following overlapping ORF via programmed -1 ribosomal frameshift (-1 PRF). Two signals in the mRNA at the beginning of the overlap program approximately every fifth ribosome to slip one nucleotide backwards and continue translation in the new -1 frame. This leads to the production of C-terminally extended polyprotein, which encodes the viral RNA-dependent RNA polymerase (RdRp). The -1 PRF event in CfMV was very efficient, even though it was programmed by a simple stem-loop structure instead of a pseudoknot, which is usually required for high -1 PRF frequencies. Interestingly, regions surrounding the -1 PRF signals improved the -1 PRF frequencies. Viral protein P27 inhibited the -1 PRF event in vivo, putatively by binding to the -1 PRF site. This suggested that P27 could regulate the occurrence of -1 PRF. Initiation of viral replication requires that viral proteins are released from the polyprotein. This is catalyzed by viral serine protease, which is also encoded from the polyprotein. N-terminal amino acid sequencing of CfMV VPg revealed that the junction of the protease and VPg was cleaved between glutamate (E) and asparagine (N) residues. This suggested that the processing sites used in CfMV differ from the glutamate and serine (S) or threonine (T) sites utilized in other sobemoviruses. However, further analysis revealed that the E/S and E/T sites may be used to cleave out some of the CfMV proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The author has constructed a synthetic gene for ∝-lytic protease. Since the DNA sequence of the protein is not known, the gene was designed by using the reverse translation of ∝-lytic protease's amino acid sequence. Unique restriction sites are carefully sought in the degenerate DNA sequence to aid in future mutagenesis studies. The unique restriction sites are designed approximately 50 base pairs apart and their appropriate codons used in the DNA sequence. The codons used to construct the DNA sequence of ∝-lytic protease are preferred codons in E-coli or used in the production of β-lactamase. Codon usage is also distributed evenly to ensure that one particular codon is not heavily used. The gene is essentially constructed from the outside in. The gene is built in a stepwise fashion using plasmids as the vehicles for the ∝-lytic oligomers. The use of plasmids allows the replication and isolation of large quantities of the intermediates during gene synthesis. The ∝-lytic DNA is a double-stranded oligomer that has sufficient overhang and sticky ends to anneal correctly in the vector. After six steps of incorporating ∝-lytic DNA, the gene is completed and sequenced to ensure that the correct DNA sequence is present and that no mutations occurred in the structural gene.

β-lactamase is the other serine hydrolase studied in this thesis. The author used the class A RTEM-1 β- lactamase encoded on the plasmid pBR322 to investigate the roll of the conserved threonine residue at position 71. Cassette mutagenesis was previously used to generate all possible amino acid substitutions at position 71. The work presented here describes the purification and kinetic characterization of a T71H mutant previously constructed by S. Schultz. The mutated gene was transferred into plasmid pJN for expression and induced with IPTG. The enzyme is purified by column chromatography and FPLC to homogeneity. Kinetic studies reveal that the mutant has lower k_(cat) values on benzylpenicillin, cephalothin and 6-aminopenicillanic acid but no changes in k_m except for cephalothin which is approximately 4 times higher. The mutant did not change siginificantly in its pH profile compared to the wild-type enzyme. Also, the mutant is more sensitive to thermal denaturation as compared to the wild-type enzyme. However, experimental evidence indicates that the probable generation of a positive charge at position 71 thermally stabilized the mutant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas fluorescens is an aquaculture pathogen that can infect a number of fish species. The virulence mechanisms of aquatic P. fluorescens remain largely unknown. Many P. fluorescens strains are able to secrete an extracellular protease called AprX, yet no AprX-like proteins have been identified in pathogenic P. fluorescens associated with aquaculture. In this study, a gene encoding an AprX homologue was cloned from TSS, a pathogenic A fluorescens strain isolated from diseased fish. In TSS, AprX is secreted into the extracellular milieu, and the production of AprX is controlled by growth phase and calcium. Mutation of aprX has multiple effects, which include impaired abilities in interaction with cultured host cells, adherence to host mucus, modulation of host immune response, and dissemination and survival in host tissues and blood. Purified recombinant AprX exhibits apparent proteolytic activity, which is optimal at pH 8.0 and 50 degrees C. The protease activity of recombinant AprX is enhanced by Ca2+ and Zn2+ and reduced by Co2+. Cytotoxicity analyses showed that purified recombinant AprX has profound toxic effect on cultured fish cells. These results demonstrate that AprX is an extracellular metalloprotease that is involved in bacterial virulence. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial outer membrane vesicles (OMVs) are spherical buds of the outer membrane (OM) containing periplasmic lumenal components. OMVs have been demonstrated to play a critical part in the transmission of virulence factors, immunologically active compounds, and bacterial survival, however vesiculation also appears to be a ubiquitous physiological process for Gram-negative bacteria. Despite their characterized biological roles, especially for pathogens, very little is known about their importance for the originating organism as well as regulation and mechanism of production. Only when we have established their biogenesis can we fully uncover their roles in pathogenesis and bacterial physiology. The overall goal of this research was to characterize bacterial mutants which display altered vesiculation phenotypes using genetic and biochemical techniques, and thereby begin to elucidate the mechanism of vesicle production and regulation. One part of this work elucidated a synthetic genetic growth defect for a strain with reduced OMV production (ΔnlpA, inner membrane lipoprotein with a minor role in methionine transport) and envelope stress (ΔdegP, dual function periplasmic chaperone/ protease responsible for managing proteinaceous waste). This research showed that the growth defect of ΔnlpAΔdegP correlated with reduced OMV production with respect to the hyprevesiculator ΔdegP and the accumulation of protein in the periplasm and DegP substrates in the lumen of OMVs. We further demonstrated that OMVs do not solely act as a stress response pathway to rid the periplasm of otherwise damaging misfolded protein but also of accumulated peptidoglycan (PG) fragments and lipopolysaccharide (LPS), elucidating OMVs as a general stress response pathway critical for bacterial well-being. The second part of this work, focused on the role of PG structure, turnover and covalent crosslinks to the OM in vesiculation. We established a direct link between PG degradation and vesiculation: Mutations in the OM lipoprotein nlpI had been previously established as a very strong hypervesiculation phenotype. In the literature NlpI had been associated with another OM lipoprotein, Spr that was recently identified as a PG hydrolase. The data presented here suggest that NlpI acts as a negative regulator of Spr and that the ΔnlpI hypervesiculation phenotype is a result of rampantly degraded PG by Spr. Additionally, we found that changes in PG structure and turnover correlate with altered vesiculation levels, as well as non-canonical D-amino acids, which are secreted by numerous bacteria on the onset of stationary phase, being a natural factor to increase OMV production. Furthermore, we discovered an inverse relationship between the concentration of Lpp-mediated, covalent crosslinks and the level of OMV production under conditions of modulated PG metabolism and structure. In contrast, situations that lead to periplasmic accumulation (protein, PG fragments, and LPS) and consequent hypervesiculation the overall OM-PG crosslink concentration appears to be unchanged. Form this work, we conclude that multiple pathways lead to OMV production: Lpp concentration-dependent and bulk driven, Lpp concentration-independent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an opportunistic Gram-negative pathogen, Pseudomonas aeruginosa must be able to adapt and survive changes and stressors in its environment during the course of infection. To aid survival in the hostile host environment, P. aeruginosa has evolved defense mechanisms, including the production of an exopolysaccharide capsule and the secretion of a myriad of degradative proteases and lipases. The production of outer membrane-derived vesicles (OMVs) serves as a secretion mechanism for virulence factors as well as a general bacterial response to envelope-acting stressors. This study investigated the effect of sublethal physiological stressors on OMV production by P. aeruginosa and whether the Pseudomonas quinolone signal (PQS) and the MucD periplasmic protease are critical mechanistic factors in this response. Exposure to some environmental stressors was determined to increase the level of OMV production as well as the activity of AlgU, the sigma factor that controls MucD expression. Overexpression of AlgU was shown to be sufficient to induce OMV production; however, stress-induced OMV production was not dependent on activation of AlgU, since stress caused increased vesiculation in strains lacking algU. We further determined that MucD levels were not an indicator of OMV production under acute stress, and PQS was not required for OMV production under stress or unstressed conditions. Finally, an investigation of the response of P. aeruginosa to oxidative stress revealed that peroxide-induced OMV production requires the presence of B-band but not A-band lipopolysaccharide. Together, these results demonstrate that distinct mechanisms exist for stress-induced OMV production in P. aeruginosa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of functional nidovirus replication-transcription complexes involves extensive proteolytic processing by virus-encoded proteases. In this study, we characterized the viral main protease (Mpro) of the type species, White bream virus (WBV), of the newly established genus Bafinivirus (order Nidovirales, family Coronaviridae, subfamily Torovirinae). Comparative sequence analysis and mutagenesis data confirmed that the WBV Mpro is a picornavirus 3C-like serine protease that uses a Ser-His-Asp catalytic triad embedded in a predicted two-ß-barrel fold, which is extended by a third domain at its C terminus. Bacterially expressed WBV Mpro autocatalytically released itself from flanking sequences and was able to mediate proteolytic processing in trans. Using N-terminal sequencing of autoproteolytic processing products we tentatively identified Gln?(Ala, Thr) as a substrate consensus sequence. Mutagenesis data provided evidence to suggest that two conserved His and Thr residues are part of the S1 subsite of the enzyme's substrate-binding pocket. Interestingly, we observed two N-proximal and two C-proximal autoprocessing sites in the bacterial expression system. The detection of two major forms of Mpro, resulting from processing at two different N-proximal and one C-proximal site, in WBV-infected epithelioma papulosum cyprini cells confirmed the biological relevance of the biochemical data obtained in heterologous expression systems. To our knowledge, the use of alternative Mpro autoprocessing sites has not been described previously for other nidovirus Mpro domains. The data presented in this study lend further support to our previous conclusion that bafiniviruses represent a distinct group of viruses that significantly diverged from other phylogenetic clusters of the order Nidovirales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidation and glycation of low-density lipoprotein (LDL) promote vascular injury in diabetes; however, the mechanisms underlying this effect remain poorly defined. The present study was conducted to determine the effects of 'heavily oxidized' glycated LDL (HOG-LDL) on endothelial nitric oxide synthase (eNOS) function. Exposure of bovine aortic endothelial cells with HOG-LDL reduced eNOS protein levels in a concentration- and time-dependent manner, without altering eNOS mRNA levels. Reduced eNOS protein levels were accompanied by an increase in intracellular Ca(2+), augmented production of reactive oxygen species (ROS) and induction of Ca(2+)-dependent calpain activity. Neither eNOS reduction nor any of these other effects were observed in cells exposed to native LDL. Reduction of intracellular Ca(2+) levels abolished eNOS reduction by HOG-LDL, as did pharmacological or genetic through calcium channel blockers or calcium chelator BAPTA or inhibition of NAD(P)H oxidase (with apocynin) or inhibition of calpain (calpain 1-specific siRNA). Consistent with these results, HOG-LDL impaired acetylcholine-induced endothelium-dependent vasorelaxation of isolated mouse aortas, and pharmacological inhibition of calpain prevented this effect. HOG-LDL may impair endothelial function by inducing calpain-mediated eNOS degradation in a ROS- and Ca(2+)-dependent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rationale:
Cathepsin S (CTSS) activity is increased in bronchoalveolar lavage (BAL) fluid from patients with cystic fibrosis (CF). This activity contributes to lung inflammation via degradation of antimicrobial proteins, such as lactoferrin and members of the β-defensin family.

Objectives:
In this study, we investigated the hypothesis that airway epithelial cells are a source of CTSS, and mechanisms underlying CTSS expression in the CF lung.

Methods:
Protease activity was determined using fluorogenic activity assays. Protein and mRNA expression were analyzed by ELISA, Western blotting, and reverse-transcriptase polymerase chain reaction.Measurements and Main Results: In contrast to neutrophil elastase, CTSS activity was detectable in 100% of CF BAL fluid samples from patients without Pseudomonas aeruginosa infection. In this study, we identified epithelial cells as a source of pulmonary CTSS activity with the demonstration that CF airway epithelial cells express and secrete significantly more CTSS than non-CF control cells in the absence of proinflammatory stimulation. Furthermore, levels of the transcription factor IRF-1 correlated with increased levels of its target gene CTSS. We discovered that miR-31, which is decreased in the CF airways, regulates IRF-1 in CF epithelial cells. Treating CF bronchial epithelial cells with a miR-31 mimic decreased IRF-1 protein levels with concomitant knockdown of CTSS expression and secretion.

Conclusions:
The miR-31/IRF-1/CTSS pathway may play a functional role in the pathogenesis of CF lung disease and may open up new avenues for exploration in the search for an effective therapeutic target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical and experimental evidence suggests that synovial thrombin formation in arthritic joints is prominent and deleterious, leading to exacerbation of rheumatoid arthritis (RA). In this context, cellular effects of thrombin mediated by the protease-activated receptors (PARs) in arthritic joints may be of paramount significance. Four PARs have now been identified. PAR1, PAR3, and PAR4 can all be activated by thrombin whereas PAR2 is activated by trypsin and few other proteases.We first explored PARs expression in RA synovial tissues. Synovial membranes from 11 RA patients were analyzed for PARs expression by RT-PCR and by immunohistology. PAR4 was found in all the biopsies, whereas the expression of PAR1, PAR 2 and PAR3 was more restricted (8/11, 5/11 and 3/11 respectively). In the arthritic synovial membrane of murine antigen-induced arthritis (AIA) we found coexpression of the four different PARs. Next, we explored the functional importance of PAR1 during AIA in vivo using PAR-1 deficient mice. The phenotype of PAR1-deficient mice (n = 22), based on the analysis of arthritis severity (as measured by 99 m tecnetium uptake, histological scoring and intra-articular fibrin measurements) was similar to that of wild-type mice (n = 24). In addition, the in vivo production of antibodies against mBSA was also similar. By contrast, the mBSA-induced in vitro lymph node cell proliferation was significantly decreased in PAR1-deficient mice as compared with controls. Accordingly, mBSA-induced production of interferon-γ by lymph node cells in culture was significantly decreased in PAR1-deficient mice as compared with controls, whereas opposite results were observed for production of IL-10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cellular protease subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) is implicated in the proteolytic processing of the viral envelope glycoprotein precursor (GPC) of arenaviruses, a step strictly required for production of infectious progeny. The small molecule SKI-1/S1P inhibitor PF-429242 was shown to have anti-viral activity against Old World arenaviruses. Here we extended these studies and show that PF-429242 also inhibits GPC processing and productive infection of New World arenaviruses, making PF-429242 a broadly active anti-arenaviral drug. In combination therapy, PF-429242 potentiated the anti-viral activity of ribavirin, indicating a synergism between the two drugs. A hallmark of arenaviruses is their ability to establish persistent infection in vitro and in vivo. Notably, PF-429242 was able to efficiently and rapidly clear persistent infection by arenaviruses. Interruption of drug treatment did not result in re-emergence of infection, indicating that PF-429242 treatment leads to virus extinction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’adénovirus possède plusieurs caractéristiques faisant de ce virus un candidat de choix pour la construction de vecteurs utiles dans les études de génomique fonctionnelle. Dans la majorité de ces applications, on a recours à un vecteur adénoviral de première génération délété de sa région E1. L’utilisation de vecteurs adénoviraux comprend deux maillons faibles : la construction du vecteur et la production subséquente de ce dernier. Le développement de méthodes alternatives est donc nécessaire pour renforcer ces deux maillons, permettant ainsi une utilisation étendue de ces vecteurs. Ce développement va s’articuler sur deux axes : l’ingénierie du vecteur de transfert pour la construction de l’adénovirus recombinant et l’ingénierie d’une lignée cellulaire pour la production du vecteur. En utilisant un vecteur de transfert adénoviral co-exprimant, à partir d’un promoteur régulable à la tétracycline, la protéase de l’adénovirus et une protéine de fluorescence verte (GFP) par l’intermédiaire d’un site d’entrée ribosomal interne (IRES), notre groupe a établi que la sélection positive, via l’expression ectopique de la protéase, est un processus efficace pour la création de librairie d’adénovirus recombinants. Par contre, la diversité atteinte dans ce premier système est relativement faible, environ 1 adénovirus recombinant par 1 000 cellules. Le travail effectué dans le cadre de cette thèse vise à construire un nouveau transfert de vecteur dans lequel l’expression de la protéase sera indépendante de celle du transgène permettant ainsi d’optimiser l’expression de la protéase. Ce travail d’optimisation a permis de réduire le phénomène de transcomplémentation du virus parental ce qui a fait grimper la diversité à 1 virus recombinant par 75 cellules. Ce système a été mis à l’épreuve en générerant une librairie adénovirale antisens dirigée contre la GFP. La diversité de cette librairie a été suffisante pour sélectionner un antisens réduisant de 75% l’expression de la GFP. L’amplification de ce vecteur adénoviral de première génération doit se faire dans une lignée cellulaire exprimant la région E1 telle que les cellules 293. Par contre, un adénovirus de première génération se répliquant dans les cellules 293 peut échanger, par recombinaison homologue, son transgène avec la région E1 de la cellule créant ainsi un adénovirus recombinant réplicatif (RCA), compromettant ainsi la pureté des stocks. Notre groupe a déjà breveté une lignée cellulaire A549 (BMAdE1) exprimant la région E1, mais qui ne peut pas recombiner avec le transgène du virus. Par contre, le niveau de réplication de l’adénovirus dans les BMAdE1 est sous-optimal, à peine 15-30% du niveau obtenu dans les cellules 293. Le travail fait dans le cadre de cette thèse a permis de mettre en évidence qu’une expression insuffisante d’E1B-55K était responsable de la mauvaise réplication du virus dans les BMAdE1. Nous avons produit de nouveaux clones à partir de la lignée parentale via une transduction avec un vecteur lentiviral exprimant E1B-55K. Nous avons confirmé que certains clones exprimaient une plus grande quantité d’E1B-55K et que ces clones amplifiaient de manière plus efficace un vecteur adénoviral de première génération. Ce clone a par la suite été adapté à la culture en suspension sans sérum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in insect cells using baculovirus vectors leads to the abundant production of virus-like particles (VLPs) that represent the immature form of the virus. When Gag-Pol is included, however, VLP production is abolished, a result attributed to premature protease activation degrading the intracellular pool of Gag precursor before particle assembly can occur. As large-scale synthesis of mature noninfectious VLPs would be useful, we have sought to control HIV protease activity in insect cells to give a balance of Gag and Gag-Pol that is compatible with mature particle formation. We show here that intermediate levels of protease activity in insect cells can be attained through site-directed mutagenesis of the protease and through antiprotease drug treatment. However, despite Gag cleavage patterns that mimicked those seen in mammalian cells, VLP synthesis exhibited an essentially all-or-none response in which VLP synthesis occurred but was immature or failed completely. Our data are consistent with a requirement for specific cellular factors in addition to the correct ratio of Gag and Gag-Pol for assembly of mature retrovirus particles in heterologous cell types. (C) 2003 Elsevier Science (USA). All rights reserved.