875 resultados para process model
Resumo:
This thesis presents novel techniques for addressing the problems of continuous change and inconsistencies in large process model collections. The developed techniques treat process models as a collection of fragments and facilitate version control, standardization and automated process model discovery using fragment-based concepts. Experimental results show that the presented techniques are beneficial in consolidating large process model collections, specifically when there is a high degree of redundancy.
Resumo:
In order to execute, study, or improve operating procedures, companies document them as business process models. Often, business process analysts capture every single exception handling or alternative task handling scenario within a model. Such a tendency results in large process specifications. The core process logic becomes hidden in numerous modeling constructs. To fulfill different tasks, companies develop several model variants of the same business process at different abstraction levels. Afterwards, maintenance of such model groups involves a lot of synchronization effort and is erroneous. We propose an abstraction technique that allows generalization of process models. Business process model abstraction assumes a detailed model of a process to be available and derives coarse-grained models from it. The task of abstraction is to tell significant model elements from insignificant ones and to reduce the latter. We propose to learn insignificant process elements from supplementary model information, e.g., task execution time or frequency of task occurrence. Finally, we discuss a mechanism for user control of the model abstraction level – an abstraction slider.
Resumo:
Real world business process models may consist of hundreds of elements and have sophisticated structure. Although there are tasks where such models are valuable and appreciated, in general complexity has a negative influence on model comprehension and analysis. Thus, means for managing the complexity of process models are needed. One approach is abstraction of business process models-creation of a process model which preserves the main features of the initial elaborate process model, but leaves out insignificant details. In this paper we study the structural aspects of process model abstraction and introduce an abstraction approach based on process structure trees (PST). The developed approach assures that the abstracted process model preserves the ordering constraints of the initial model. It surpasses pattern-based process model abstraction approaches, allowing to handle graph-structured process models of arbitrary structure. We also provide an evaluation of the proposed approach.
Resumo:
Process models provide companies efficient means for managing their business processes. Tasks where process models are employed are different by nature and require models of various abstraction levels. However, maintaining several models of one business process involves a lot of synchronization effort and is erroneous. Business process model abstraction assumes a detailed model of a process to be available and derives coarse grained models from it. The task of abstraction is to tell significant model elements from insignificant ones and to reduce the latter. In this paper we argue that process model abstraction can be driven by different abstraction criteria. Criterion choice depends on a task which abstraction facilitates. We propose an abstraction slider - a mechanism that allows user control of the model abstraction level. We discuss examples of combining the slider with different abstraction criteria and sets of process model transformation rules.
Resumo:
The design and development of process-aware information systems is often supported by specifying requirements as business process models. Although this approach is generally accepted as an effective strategy, it remains a fundamental challenge to adequately validate these models given the diverging skill set of domain experts and system analysts. As domain experts often do not feel confident in judging the correctness and completeness of process models that system analysts create, the validation often has to regress to a discourse using natural language. In order to support such a discourse appropriately, so-called verbalization techniques have been defined for different types of conceptual models. However, there is currently no sophisticated technique available that is capable of generating natural-looking text from process models. In this paper, we address this research gap and propose a technique for generating natural language texts from business process models. A comparison with manually created process descriptions demonstrates that the generated texts are superior in terms of completeness, structure, and linguistic complexity. An evaluation with users further demonstrates that the texts are very understandable and effectively allow the reader to infer the process model semantics. Hence, the generated texts represent a useful input for process model validation.
Resumo:
The value of information technology (IT) is often realized when continuously being used after users’ initial acceptance. However, previous research on continuing IT usage is limited for dismissing the importance of mental goals in directing users’ behaviors and for inadequately accommodating the group context of users. This in-progress paper offers a synthesis of several literature to conceptualize continuing IT usage as multilevel constructs and to view IT usage behavior as directed and energized by a set of mental goals. Drawing from the self-regulation theory in the social psychology, this paper proposes a process model, positioning continuing IT usage as multiple-goal pursuit. An agent-based modeling approach is suggested to further explore causal and analytical implications of the proposed process model.
Resumo:
Notwithstanding the interest over many years by scholars in modeling the internationalization of the firm, the initial transition for the firm from domestic to international operations remains under-researched. We identify the behavioral factors that are important at the pre-internationalization state and discuss how they may interrelate to influence a decision to commit to internationalization through export commencement. We study export commitment by proposing and constructing an index that incorporates the factors that influence a firm’s propensity to commit to export activities. Utilizing the items from this index in a logistic regression analysis, we distinguish between the pre-internationalization characteristics of exporting and non-exporting firms to better understand the key influences in export commitment. Implications are discussed.
Resumo:
Empirical evidence shows that repositories of business process models used in industrial practice contain significant amounts of duplication. This duplication arises for example when the repository covers multiple variants of the same processes or due to copy-pasting. Previous work has addressed the problem of efficiently retrieving exact clones that can be refactored into shared subprocess models. This article studies the broader problem of approximate clone detection in process models. The article proposes techniques for detecting clusters of approximate clones based on two well-known clustering algorithms: DBSCAN and Hi- erarchical Agglomerative Clustering (HAC). The article also defines a measure of standardizability of an approximate clone cluster, meaning the potential benefit of replacing the approximate clones with a single standardized subprocess. Experiments show that both techniques, in conjunction with the proposed standardizability measure, accurately retrieve clusters of approximate clones that originate from copy-pasting followed by independent modifications to the copied fragments. Additional experiments show that both techniques produce clusters that match those produced by human subjects and that are perceived to be standardizable.
Resumo:
Identifying appropriate decision criteria and making optimal decisions in a structured way is a complex process. This paper presents an approach for doing this in the form of a hybrid Quality Function Deployment (QFD) and Cybernetic Analytic Network Process (CANP) model for project manager selection. This involves the use of QFD to translate the owner's project management expectations into selection criteria and the CANP to weight the expectations and selection criteria. The supermatrix approach then prioritises the candidates with respect to the overall decision-making goal. A case study is used to demonstrate the use of the model in selecting a renovation project manager. This involves the development of 18 selection criteria in response to the owner's three main expectations of time, cost and quality.
Resumo:
1. Introduction The success of self-regulation, in terms of enhancing older drivers’ safety and maintaining their mobility, depends largely upon older drivers’ awareness of the declines in their driving abilities. Therefore, interventions targeted at increasing older drivers’ safety should aim to enhance their awareness of their physical, sensory and cognitive limitations. Moreover, previous research suggests that driving behaviour change may occur through stages and that interventions and feedback may be perceived differently at each stage. 2. Study aims To further understand the process of driving self-regulation among older adults by exploring their perceptions and experiences of self-regulation, using the PAPM as a framework. To investigate the possible impact of feedback on their driving on their decision making process. 3. Methodology Research tool: Qualitative focus groups (n=5 sessions) Recruitment: Posters, media, newspaper advertisement and emails Inclusion criteria: Aged 70 or more, English-speaking, current drivers Participants: Convenience sample of 27 men and women aged 74 to 90 in the Sunshine Coast and Brisbane city, Queensland, Australia. 4. Analysis Thematic analysis was conducted following the process outlined by Braun and Clarke (2006) to identify, analyse and report themes within the data. Four main themes were identified.
Resumo:
Many organizations realize that increasing amounts of data (“Big Data”) need to be dealt with intelligently in order to compete with other organizations in terms of efficiency, speed and services. The goal is not to collect as much data as possible, but to turn event data into valuable insights that can be used to improve business processes. However, data-oriented analysis approaches fail to relate event data to process models. At the same time, large organizations are generating piles of process models that are disconnected from the real processes and information systems. In this chapter we propose to manage large collections of process models and event data in an integrated manner. Observed and modeled behavior need to be continuously compared and aligned. This results in a “liquid” business process model collection, i.e. a collection of process models that is in sync with the actual organizational behavior. The collection should self-adapt to evolving organizational behavior and incorporate relevant execution data (e.g. process performance and resource utilization) extracted from the logs, thereby allowing insightful reports to be produced from factual organizational data.
Resumo:
This paper describes the use of liaison to better integrate product model and assembly process model so as to enable sharing of design and assembly process information in a common integrated form and reason about them. Liaison can be viewed as a set, usually a pair, of features in proximity with which process information can be associated. A liaison is defined as a set of geometric entities on the parts being assembled and relations between these geometric entities. Liaisons have been defined for riveting, welding, bolt fastening, screw fastening, adhesive bonding (gluing) and blind fastening processes. The liaison captures process specific information through attributes associated with it. The attributes are associated with process details at varying levels of abstraction. A data structure for liaison has been developed to cluster the attributes of the liaison based on the level of abstraction. As information about the liaisons is not explicitly available in either the part model or the assembly model, algorithms have been developed for extracting liaisons from the assembly model. The use of liaison is proposed to enable both the construction of process model as the product model is fleshed out, as well as maintaining integrity of both product and process models as the inevitable changes happen to both design and the manufacturing environment during the product lifecycle. Results from aerospace and automotive domains have been provided to illustrate and validate the use of liaisons. (C) 2014 Elsevier Ltd. All rights reserved.