957 resultados para prisme minimal
Resumo:
Lepton mass hierarchies and lepton flavour violation are revisited in the framework of Randall-Sundrum models. Models with Dirac-type as well as Majorana-type neutrinos are considered. The five-dimensional c-parameters are fit to the charged lepton and neutrino masses and mixings using chi(2) minimization. Leptonic flavour violation is shown to be large in these cases. Schemes of minimal flavour violation are considered for the cases of an effective LLHH operator and Dirac neutrinos and are shown to significantly reduce the limits from lepton flavour violation.
Resumo:
Text segmentation and localization algorithms are proposed for the born-digital image dataset. Binarization and edge detection are separately carried out on the three colour planes of the image. Connected components (CC's) obtained from the binarized image are thresholded based on their area and aspect ratio. CC's which contain sufficient edge pixels are retained. A novel approach is presented, where the text components are represented as nodes of a graph. Nodes correspond to the centroids of the individual CC's. Long edges are broken from the minimum spanning tree of the graph. Pair wise height ratio is also used to remove likely non-text components. A new minimum spanning tree is created from the remaining nodes. Horizontal grouping is performed on the CC's to generate bounding boxes of text strings. Overlapping bounding boxes are removed using an overlap area threshold. Non-overlapping and minimally overlapping bounding boxes are used for text segmentation. Vertical splitting is applied to generate bounding boxes at the word level. The proposed method is applied on all the images of the test dataset and values of precision, recall and H-mean are obtained using different approaches.
Resumo:
We have introduced the weight of a group which has a presentation with number of relations is at most the number of generators. We have shown that the number of facets of any contracted pseudotriangulation of a connected closed 3-manifold M is at least the weight of the fundamental group of M. This lower bound is sharp for the 3-manifolds RP3, L(3, 1), L(5, 2), S-1 x S-1 x S-1, S-2 x S-1, S-2 (x) under bar S-1 and S-3/Q(8), where Q(8) is the quaternion group. Moreover, there is a unique such facet minimal pseudotriangulation in each of these seven cases. We have also constructed contracted pseudotriangulations of L(kq - 1, q) with 4(q + k - 1) facets for q >= 3, k >= 2 and L(kq + 1, q) with 4(q + k) facets for q >= 4, k >= 1. By a recent result of Swartz, our pseudotriangulations of L(kg + 1, q) are facet minimal when kg + 1 are even. In 1979, Gagliardi found presentations of the fundamental group of a manifold M in terms of a contracted pseudotriangulation of M. Our construction is the converse of this, namely, given a presentation of the fundamental group of a 3-manifold M, we construct a contracted pseudotriangulation of M. So, our construction of a contracted pseudotriangulation of a 3-manifold M is based on a presentation of the fundamental group of M and it is computer-free.
Resumo:
In this article, we analyse several discontinuous Galerkin (DG) methods for the Stokes problem under minimal regularity on the solution. We assume that the velocity u belongs to H-0(1)(Omega)](d) and the pressure p is an element of L-0(2)(Omega). First, we analyse standard DG methods assuming that the right-hand side f belongs to H-1(Omega) boolean AND L-1(Omega)](d). A DG method that is well defined for f belonging to H-1(Omega)](d) is then investigated. The methods under study include stabilized DG methods using equal-order spaces and inf-sup stable ones where the pressure space is one polynomial degree less than the velocity space.
Resumo:
A discrete-time dynamics of a non-Markovian random walker is analyzed using a minimal model where memory of the past drives the present dynamics. In recent work N. Kumar et al., Phys. Rev. E 82, 021101 (2010)] we proposed a model that exhibits asymptotic superdiffusion, normal diffusion, and subdiffusion with the sweep of a single parameter. Here we propose an even simpler model, with minimal options for the walker: either move forward or stay at rest. We show that this model can also give rise to diffusive, subdiffusive, and superdiffusive dynamics at long times as a single parameter is varied. We show that in order to have subdiffusive dynamics, the memory of the rest states must be perfectly correlated with the present dynamics. We show explicitly that if this condition is not satisfied in a unidirectional walk, the dynamics is only either diffusive or superdiffusive (but not subdiffusive) at long times.
Resumo:
Motivated by the recent proposal for the S-matrix in AdS(3) x S-3 with mixed three form fluxes, we study classical folded string spinning in AdS(3) with both Ramond and Neveu-Schwarz three form fluxes. We solve the equations of motion of these strings and obtain their dispersion relation to the leading order in the Neveu-Schwarz flux b. We show that dispersion relation for the spinning strings with large spin S acquires a term given by -root lambda/2 pi b(2) log(2) S in addition to the usual root lambda/pi log S term where root lambda is proportional to the square of the radius of AdS(3). Using SO(2, 2) transformations and re-parmetrizations we show that these spinning strings can be related to light like Wilson loops in AdS(3) with Neveu-Schwarz flux b. We observe that the logarithmic divergence in the area of the light like Wilson loop is also deformed by precisely the same coefficient of the b(2) log(2) S term in the dispersion relation of the spinning string. This result indicates that the coefficient of b(2) log(2) S has a property similar to the coefficient of the log S term, known as cusp-anomalous dimension, and can possibly be determined to all orders in the coupling lambda using the recent proposal for the S-matrix.
Resumo:
A triangulated d-manifold K, satisfies the inequality for da parts per thousand yen3. The triangulated d-manifolds that meet the bound with equality are called tight neighbourly. In this paper, we present tight neighbourly triangulations of 4-manifolds on 15 vertices with as an automorphism group. One such example was constructed by Bagchi and Datta (Discrete Math. 311 (citeyearbd102011) 986-995). We show that there are exactly 12 such triangulations up to isomorphism, 10 of which are orientable.
Resumo:
We consider the possibility that the heavier CP-even Higgs boson (H-0) in the minimal supersymmetric standard model (MSSM) decays invisibly into neutralinos in the light of the recent discovery of the 126 GeV resonance at the CERN Large Hadron Collider (LHC). For this purpose we consider the minimal supersymmetric standard model with universal, nonuniversal and arbitrary boundary conditions on the supersymmetry breaking gaugino mass parameters at the grand unified scale. Typically, scenarios with universal and nonuniversal gaugino masses do not allow invisible decays of the lightest Higgs boson (h(0)), which is identified with the 126 GeV resonance, into the lightest neutralinos in the MSSM. With arbitrary gaugino masses at the grand unified scale, such an invisible decay is possible. The second lightest Higgs boson can decay into various invisible final states for a considerable region of the MSSM parameter space with arbitrary gaugino masses as well as with the gaugino masses restricted by universal and nonuniversal boundary conditions at the grand unified scale. The possibility of the second lightest Higgs boson of the MSSM decaying into invisible channels is more likely for arbitrary gaugino masses at the grand unified scale. The heavier Higgs boson decay into lighter particles leads to the intriguing possibility that the entire Higgs boson spectrum of the MSSM may be visible at the LHC even if it decays invisibly, during the searches for an extended Higgs boson sector at the LHC. In such a scenario the nonobservation of the extended Higgs sector of the MSSM may carefully be used to rule out regions of the MSSM parameter space at the LHC.
Resumo:
It is known in literature that a wheeled mobile robot (WMR) with fixed length axle will slip on an uneven terrain. One way to avoid wheel slip is to use a torus-shaped wheel with lateral tilt capability which allows the distance between the wheel-ground contact points to change even with a fixed length axle. Such an arrangement needs a two degree-of-freedom (DOF) suspension for the vertical and lateral tilting motion of the wheel. In this paper modeling, simulation, design and experimentation with a three-wheeled mobile robot, with torus-shaped wheels and a novel two DOF suspension allowing independent lateral tilt and vertical motion, is presented. The suspension is based on a four-bar mechanism and is called the double four-bar (D4Bar) suspension. Numerical simulations show that the three-wheeled mobile robot can traverse uneven terrain with low wheel slip. Experiments with a prototype three-wheeled mobile robot moving on a constructed uneven terrain along a straight line, a circular arc and a path representing a lane change, also illustrate the low slip capability of the three-wheeled mobile robot with the D4Bar suspension. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Gravity mediated supersymmetry breaking becomes comparable to gauge mediated supersymmetry breaking contributions when messenger masses are close to the GUT scale. By suitably arranging the gravity contributions, one can modify the soft supersymmetry breaking sector to generate a large stop mixing parameter and a light Higgs mass of 125 GeV. In this kind of hybrid models, however, the nice features of gauge mediation like flavor conservation, etc. are lost. To preserve the nice features, gravitational contributions should become important for lighter messenger masses and should be important only for certain fields. This is possible when the hidden sector contains multiple (at least two) spurions with hierarchical vacuum expectation values. In this case, the gravitational contributions can be organized to be ``just right.'' We present a complete model with two spurion hidden sector where the gravitational contribution is from a warped flavor model in a Randall-Sundrum setting. Along the way, we present simple expressions to handle renormalization group equations when supersymmetry is broken by two different sectors at two different scales.
Resumo:
In this paper we introduce a new cost sharing rule-the minimal overlap cost sharing rule-which is associated with the minimal overlap rule for claims problems defined by O'Neill (1982). An axiomatic characterization is given by employing a unique axiom: demand separability. Variations of this axiom enable the serial cost sharing rule (Moulin and Shenker, 1992) and the rules of a family (Albizuri, 2010) that generalize the serial cost sharing rule to be characterized. Finally, a family that includes the minimal overlap cost sharing rule is defined and obtained by means of an axiomatic characterization.