780 resultados para primary visual cortex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neurons in the primary visual cortex that respond to the orientation of visual stimuli were discovered in the late 1950s (Hubel, D.H. & Wiesel, T.N. 1959. J. Physiol. 148:574-591) but how they achieve this response is poorly understood. Recently, experiments have demonstrated that the visual cortex may use the image processing techniques of cross or auto-correlation to detect the streaks in random dot patterns (Barlow, H. & Berry, D.L. 2010. Proc. R. Soc. B. 278: 2069-2075). These experiments made use of sinusoidally modulated random dot patterns and of the so-called Glass patterns - where randomly positioned dot pairs are oriented in a parallel configuration (Glass, L. 1969. Nature. 223: 578-580). The image processing used by the visual cortex could be inferred from how the threshold of detection of these patterns in the presence of random noise varied as a function of the dot density in the patterns. In the present study, the detection thresholds have been measured for other types of patterns including circular, hyperbolic, spiral and radial Glass patterns and an indication of the type of image processing (cross or auto-correlation) by the visual cortex is presented. As a result, it is hoped that this study will contribute to an understanding of what David Marr called the ‘computational goal’ of the primary visual cortex (Marr, D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. New York: Freeman.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neural basis of visual perception can be understood only when the sequence of cortical activity underlying successful recognition is known. The early steps in this processing chain, from retina to the primary visual cortex, are highly local, and the perception of more complex shapes requires integration of the local information. In Study I of this thesis, the progression from local to global visual analysis was assessed by recording cortical magnetoencephalographic (MEG) responses to arrays of elements that either did or did not form global contours. The results demonstrated two spatially and temporally distinct stages of processing: The first, emerging 70 ms after stimulus onset around the calcarine sulcus, was sensitive to local features only, whereas the second, starting at 130 ms across the occipital and posterior parietal cortices, reflected the global configuration. To explore the links between cortical activity and visual recognition, Studies II III presented subjects with recognition tasks of varying levels of difficulty. The occipito-temporal responses from 150 ms onwards were closely linked to recognition performance, in contrast to the 100-ms mid-occipital responses. The averaged responses increased gradually as a function of recognition performance, and further analysis (Study III) showed the single response strengths to be graded as well. Study IV addressed the attention dependence of the different processing stages: Occipito-temporal responses peaking around 150 ms depended on the content of the visual field (faces vs. houses), whereas the later and more sustained activity was strongly modulated by the observers attention. Hemodynamic responses paralleled the pattern of the more sustained electrophysiological responses. Study V assessed the temporal processing capacity of the human object recognition system. Above sufficient luminance, contrast and size of the object, the processing speed was not limited by such low-level factors. Taken together, these studies demonstrate several distinct stages in the cortical activation sequence underlying the object recognition chain, reflecting the level of feature integration, difficulty of recognition, and direction of attention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A proposal for a model of the primary visual cortex is reported. It is structured with the basis of a simple unit cell able to perform fourteen pairs of different boolean functions corresponding to the two possible inputs. As a first step, a model of the retina is presented. Different types of responses, according to the different possibilities of interconnecting the building blocks, have been obtained. These responses constitute the basis for an initial configuration of the mammalian primary visual cortex. Some qualitative functions, as symmetry or size of an optical input, have been obtained. A proposal to extend this model to some higher functions, concludes the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At early stages in visual processing cells respond to local stimuli with specific features such as orientation and spatial frequency. Although the receptive fields of these cells have been thought to be local and independent, recent physiological and psychophysical evidence has accumulated, indicating that the cells participate in a rich network of local connections. Thus, these local processing units can integrate information over much larger parts of the visual field; the pattern of their response to a stimulus apparently depends on the context presented. To explore the pattern of lateral interactions in human visual cortex under different context conditions we used a novel chain lateral masking detection paradigm, in which human observers performed a detection task in the presence of different length chains of high-contrast-flanked Gabor signals. The results indicated a nonmonotonic relation of the detection threshold with the number of flankers. Remote flankers had a stronger effect on target detection when the space between them was filled with other flankers, indicating that the detection threshold is caused by dynamics of large neuronal populations in the neocortex, with a major interplay between excitation and inhibition. We considered a model of the primary visual cortex as a network consisting of excitatory and inhibitory cell populations, with both short- and long-range interactions. The model exhibited a behavior similar to the experimental results throughout a range of parameters. Experimental and modeling results indicated that long-range connections play an important role in visual perception, possibly mediating the effects of context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between brain activity and reading performance was examined to test the hypothesis that dyslexia involves a deficit in a specific visual pathway known as the magnocellular (M) pathway. Functional magnetic resonance imaging was used to measure brain activity in dyslexic and control subjects in conditions designed to preferentially stimulate the M pathway. Dyslexics showed reduced activity compared with controls both in the primary visual cortex and in a secondary cortical visual area (MT+) that is believed to receive a strong M pathway input. Most importantly, significant correlations were found between individual differences in reading rate and brain activity. These results support the hypothesis for an M pathway abnormality in dyslexia and imply a strong relationship between the integrity of the M pathway and reading ability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In subjects suffering from early onset strabismus, signals conveyed by the two eyes are not perceived simultaneously but in alternation. We exploited this phenomenon of interocular suppression to investigate the neuronal correlate of binocular rivalry in primary visual cortex of awake strabismic cats. Monocularly presented stimuli that were readily perceived by the animal evoked synchronized discharges with an oscillatory patterning in the γ-frequency range. Upon dichoptic stimulation, neurons responding to the stimulus that continued to be perceived increased the synchronicity and the regularity of their oscillatory patterning while the reverse was true for neurons responding to the stimulus that was no longer perceived. These differential changes were not associated with modifications of discharge rate, suggesting that at early stages of visual processing the degree of synchronicity rather than the amplitude of responses determines which signals are perceived and control behavioral responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Revealing the layout of cortical maps is important both for understanding the processes involved in their development and for uncovering the mechanisms underlying neural computation. The typical organization of orientation maps in the cat visual cortex is radial; complete orientation cycles are mapped around orientation singularities. In contrast, long linear zones of orientation representation have been detected in the primary visual cortex of the tree shrew. In this study, we searched for the existence of long linear sequences and wide linear zones within orientation preference maps of the cat visual cortex. Optical imaging based on intrinsic signals was used. Long linear sequences and wide linear zones of preferred orientation were occasionally detected along the border between areas 17 and 18, as well as within area 18. Adjacent zones of distinct radial and linear organizations were observed across area 18 of a single hemisphere. However, radial and linear organizations were not necessarily segregated; long (7.5 mm) linear sequences of preferred orientation were found embedded within a typical pinwheel-like organization of orientation. We conclude that, although the radial organization is dominant, perfectly linear organization may develop and perform the processing related to orientation in the cat visual cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensory areas of adult cerebral cortex can reorganize in response to long-term alterations in patterns of afferent signals. This long-term plasticity is thought to play a crucial role in recovery from injury and in some forms of learning. However, the degree to which sensory representations in primary cortical areas depend on short-term (i.e., minute to minute) stimulus variations remains unclear. A traditional view is that each neuron in the mature cortex has a fixed receptive field structure. An alternative view, with fundamentally different implications for understanding cortical function, is that each cell's receptive field is highly malleable, changing according to the recent history of the sensory environment. Consistent with the latter view, it has been reported that selective stimulation of regions surrounding the receptive field induces a dramatic short-term increase in receptive field size for neurons in the visual cortex [Pettet, M. W. & Gilbert, C. D. (1992) Proc. Natl. Acad. Sci. USA 89, 8366-8370]. In contrast, we report here that there is no change in either the size or the internal structure of the receptive field following several minutes of surround stimulation. However, for some cells, overall responsiveness increases. These results suggest that dynamic alterations of receptive field structure do not underlie short-term plasticity in the mature primary visual cortex. However, some degree of short-term adaptability could be mediated by changes in responsiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gamma activity to stationary grating stimuli was studied non-invasively using MEG recordings in humans. Using a spatial filtering technique, we localized gamma activity to primary visual cortex. We tested the hypothesis that spatial frequency properties of visual stimuli may be related to the temporal frequency characteristics of the associated cortical responses. We devised a method to assess temporal frequency differences between stimulus-related responses that typically exhibit complex spectral shapes. We applied this methodology to either single-trial (induced) or time-averaged (evoked) responses in four frequency ranges (0-40, 20-60, 40-80 and 60-100 Hz) and two time windows (either the entire duration of stimulus presentation or the first second following stimulus onset). Our results suggest that stimuli of varying spatial frequency induce responses that exhibit significantly different temporal frequency characteristics. These effects were particularly accentuated for induced responses in the classical gamma frequency band (20-60 Hz) analyzed over the entire duration of stimulus presentation. Strikingly, examining the first second of the responses following stimulus onset resulted in significant loss in stimulus specificity, suggesting that late signal components contain functionally relevant information. These findings advocate a functional role of gamma activity in sensory representation. We suggest that stimulus specific frequency characteristics of MEG signals can be mapped to processes of neuronal synchronization within the framework of coupled dynamical systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods of solving the neuro-electromagnetic inverse problem are examined and developed, with specific reference to the human visual cortex. The anatomy, physiology and function of the human visual system are first reviewed. Mechanisms by which the visual cortex gives rise to external electric and magnetic fields are then discussed, and the forward problem is described mathematically for the case of an isotropic, piecewise homogeneous volume conductor, and then for an anisotropic, concentric, spherical volume conductor. Methods of solving the inverse problem are reviewed, before a new technique is presented. This technique combines prior anatomical information gained from stereotaxic studies, with a probabilistic distributed-source algorithm to yield accurate, realistic inverse solutions. The solution accuracy is enhanced by using both visual evoked electric and magnetic responses simultaneously. The numerical algorithm is then modified to perform equivalent current dipole fitting and minimum norm estimation, and these three techniques are implemented on a transputer array for fast computation. Due to the linear nature of the techniques, they can be executed on up to 22 transputers with close to linear speedup. The latter part of the thesis describes the application of the inverse methods to the analysis of visual evoked electric and magnetic responses. The CIIm peak of the pattern onset evoked magnetic response is deduced to be a product of current flowing away from the surface areas 17, 18 and 19, while the pattern reversal P100m response originates in the same areas, but from oppositely directed current. Cortical retinotopy is examined using sectorial stimuli, the CI and CIm ;peaks of the pattern onset electric and magnetic responses are found to originate from areas V1 and V2 simultaneously, and they therefore do not conform to a simple cruciform model of primary visual cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to test the hypothesis that M1 is intimately involved in the initial phase of sensorimotor adaptation. Inhibitory theta burst stimulation was applied to M1 prior to a task requiring modification of torques generated about the elbow/forearm complex in response to rotations of a visual feedback display. Participants were first exposed to a 30° clockwise (CW) rotation (Block A), then a 60° counterclockwise rotation (Block B), followed immediately by a second block of 30° CW rotation (A2). In the STIM condition, participants received 20s of continuous theta burst stimulation (cTBS) prior to the initial A Block. In the conventional (CON) condition, no stimulation was applied. The overt characteristics of performance in the two conditions were essentially equivalent with respect to the errors exhibited upon exposure to a new variant of the task. There were however, profound differences between the conditions in the latency of response preparation, and the excitability of corticospinal projections from M1, which accompanied phases of de-adaptation and re-adaptation (during Blocks B and A2). Upon subsequent exposure to the A rotation 24h later, the rate of re-adaptation was lower in the stimulation condition than that present in the conventional condition. These results support the assertion that primary motor cortex assumes a key role in a network that mediates adaptation to visuomotor perturbation, and emphasise that it is engaged functionally during the early phase of learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lesions to the primary geniculo-striate visual pathway cause blindness in the contralesional visual field. Nevertheless, previous studies have suggested that patients with visual field defects may still be able to implicitly process the affective valence of unseen emotional stimuli (affective blindsight) through alternative visual pathways bypassing the striate cortex. These alternative pathways may also allow exploitation of multisensory (audio-visual) integration mechanisms, such that auditory stimulation can enhance visual detection of stimuli which would otherwise be undetected when presented alone (crossmodal blindsight). The present dissertation investigated implicit emotional processing and multisensory integration when conscious visual processing is prevented by real or virtual lesions to the geniculo-striate pathway, in order to further clarify both the nature of these residual processes and the functional aspects of the underlying neural pathways. The present experimental evidence demonstrates that alternative subcortical visual pathways allow implicit processing of the emotional content of facial expressions in the absence of cortical processing. However, this residual ability is limited to fearful expressions. This finding suggests the existence of a subcortical system specialised in detecting danger signals based on coarse visual cues, therefore allowing the early recruitment of flight-or-fight behavioural responses even before conscious and detailed recognition of potential threats can take place. Moreover, the present dissertation extends the knowledge about crossmodal blindsight phenomena by showing that, unlike with visual detection, sound cannot crossmodally enhance visual orientation discrimination in the absence of functional striate cortex. This finding demonstrates, on the one hand, that the striate cortex plays a causative role in crossmodally enhancing visual orientation sensitivity and, on the other hand, that subcortical visual pathways bypassing the striate cortex, despite affording audio-visual integration processes leading to the improvement of simple visual abilities such as detection, cannot mediate multisensory enhancement of more complex visual functions, such as orientation discrimination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this functional magnetic resonance imaging (fMRI) study was to identify human brain areas that are sensitive to the direction of auditory motion. Such directional sensitivity was assessed in a hypothesis-free manner by analyzing fMRI response patterns across the entire brain volume using a spherical-searchlight approach. In addition, we assessed directional sensitivity in three predefined brain areas that have been associated with auditory motion perception in previous neuroimaging studies. These were the primary auditory cortex, the planum temporale and the visual motion complex (hMT/V5+). Our whole-brain analysis revealed that the direction of sound-source movement could be decoded from fMRI response patterns in the right auditory cortex and in a high-level visual area located in the right lateral occipital cortex. Our region-of-interest-based analysis showed that the decoding of the direction of auditory motion was most reliable with activation patterns of the left and right planum temporale. Auditory motion direction could not be decoded from activation patterns in hMT/V5+. These findings provide further evidence for the planum temporale playing a central role in supporting auditory motion perception. In addition, our findings suggest a cross-modal transfer of directional information to high-level visual cortex in healthy humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously it has been shown that the branching pattern of pyramidal cells varies markedly between different cortical areas in simian primates. These differences are thought to influence the functional complexity of the cells. In particular, there is a progressive increase in the fractal dimension of pyramidal cells with anterior progression through cortical areas in the occipitotemporal (OT) visual stream, including the primary visual area (V1), the second visual area (V2), the dorsolateral area (DL, corresponding to the fourth visual area) and inferotemporal cortex (IT). However, there are as yet no data on the fractal dimension of these neurons in prosimian primates. Here we focused on the nocturnal prosimian galago (Otolemur garnetti). The fractal dimension (D), and aspect ratio (a measure of branching symmetry), was determined for I I I layer III pyramidal cells in V1, V2, DL and IT. We found, as in simian primates, that the fractal dimension of neurons increased with anterior progression from V1 through V2, DL, and IT. Two important conclusions can be drawn from these results: (1) the trend for increasing branching complexity with anterior progression through OT areas was likely to be present in a common primate ancestor, and (2) specialization in neuron structure more likely facilitates object recognition than spectral processing.