998 resultados para potential curves
Resumo:
The thermoluminescence (TL) characteristics of quartz are highly dependent of its thermal history. Based on the enhancement of quartz luminescence occurred after heating, some authors proposed to use quartz TL to recover thermal events that affected quartz crystals. However, little is know about the influence of the temperature of quartz crystallization on its TL characteristics. In the present study, we evaluate the TL sensitivity and dose response curves of hydrothermal and metamorphic quartz with crystallization temperatures from 209 +/- 15 to 633 +/- 27 degrees C determined through fluid inclusion and mineral chemistry analysis. The studied crystals present a cooling thermal history, which allow the acquiring of their natural TL without influence of heating after crystallization. The TL curves of the studied samples present two main components formed by different peaks overlapped around 110 C and 200-400 degrees C. The TL sensitivity in the 200-400 degrees C region increases linearly with the temperature of quartz crystallization. No relationship was observed between temperatures of quartz crystallization and saturation doses (<100 Gy). The elevated TL sensitivity of the high temperature quartz is attributed to the control exerted by the temperature of crystallization on the substitution of Si(4+) by ions such as Al(3+) and Ti(4+), which produce defects responsible for luminescence phenomena. The linear relationship observed between TL in the 200-400 degrees C region and crystallization temperature has potential use as a quartz geothermometer. The relative abundance of quartz in the earth crust and the easiness to measure TL are advantageous in relation to geothermometry methods based on chemistry of other minerals. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A RP-HPLC method with photodiode array detection (DAD) was developed to separate, identify and quantify simultaneously the most representative phenolic compounds present in Madeira and Canary Islands wines. The optimized chromatographic method was carefully validated in terms of linearity, precision, accuracy and sensitivity. A high repeatability and a good stability of phenolics retention times (a3%) were obtained, as well as relative peak area. Also high recoveries were achieved, over 80.3%. Polyphenols calibration curves showed a good linearity (r2 A0.994) within test ranges. Detection limits ranged between 0.03 and 11.5 lg/mL for the different polyphenols. A good repeatability was obtained, with intra-day variations less than 7.9%. The described method was successfully applied to quantify several polyphenols in 26 samples of different kinds of wine (red, ros and white wines) from Madeira and Canary Islands. Gallic acid was by far the most predominant acid. It represents more than 65% of all phenolics, followed by p-coumaric and caffeic acids. The major flavonoid found in Madeira wines was trans-resveratrol. In some wines, (–)-epicatechin was also found in highest amount. Canary wines were shown to be rich in gallic, caffeic and p-coumaric acids and quercetin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
High critical temperature superconductors are evolving from a scientific research subject into large-scale application devices. In order to meet this development demand they must withstand high current capacity under mechanical loads arising from thermal contraction during cooling from room temperature down to operating temperature (usually 77 K) and due to the electromagnetic forces generated by the current and the induced magnetic field. Among the HTS materials, the Bi2Sr2Ca2Cu3Ox, compound imbedded in an Ag/AgMg sheath has shown the best results in terms of critical current at 77 K and tolerance against mechanical strain. Aiming to evaluate the influence of thermal stress induced by a number of thermal shock cycles we have evaluated the V-I characteristic curves of samples mounted onto semicircular holders with different curvature radius (9.75 to 44.5 mm). The most deformed sample (epsilon = 1.08%) showed the largest reduction of critical current (40%) compared to the undeformed sample and the highest sensitivity to thermal stress (I-c/I-c0 = 0.5). The V-I characteristic curves were also fitted by a potential curve displaying n-exponents varying from 20 down to 10 between the initial and last thermal shock cycle.
Resumo:
The electronic structure and spectroscopic properties (R(e), omega(e), omega(e)x(e), beta(e), and T(e)) of the ground state and the 22 lowest excited states of chlorine molecule were studied within a four-component relativistic framework using the MOLFDIR program package. The potential energy curves of all possible 23 covalent states were calculated using relativistic complete open shell configuration interaction approach. In addition, four component multireference configuration interaction with single and double excitation calculations were performed in order to infer the effects due to dynamical correlation in vertical excitations. The calculated properties are in good agreement with the available experimental data.
Resumo:
We investigate the escape of an ensemble of noninteracting particles inside an infinite potential box that contains a time-dependent potential well. The dynamics of each particle is described by a two-dimensional nonlinear area-preserving mapping for the variables energy and time, leading to a mixed phase space. The chaotic sea in the phase space surrounds periodic islands and is limited by a set of invariant spanning curves. When a hole is introduced in the energy axis, the histogram of frequency for the escape of particles, which we observe to be scaling invariant, grows rapidly until it reaches a maximum and then decreases toward zero at sufficiently long times. A plot of the survival probability of a particle in the dynamics as function of time is observed to be exponential for short times, reaching a crossover time and turning to a slower-decay regime, due to sticky regions observed in the phase space.
Resumo:
The operational details of the apparent electrical conductivity (ECa) sensor manufactured by Veris Technologies have been extensively documented in literature reports, but the geographical distribution of these research studies indicate a strong regional concentration in the US Mid-west and Southern states. The agricultural lands of these states diverge significantly to the soil conditions and water regime of irrigated land in the US South-western states such as Arizona where there is no previous research reports of the use of this particular sensor. The objectives of the present study were to analyze the performance of this sensor under the conditions of typical soils in irrigated farms of Central Arizona. We tested under static conditions the performance of the sensor on three soils of contrasting texture. Observations were collected as time series data as soil moisture changed from saturation to permanent wilting point. Observations were repeated at the hours of lowest and highest temperatures. In addition, this study included soil penetration resistance and salinity determinations. Preliminary results indicate that soil temperature of the upper layer caused the most dynamic change in the sensor output. The ECa curves of the three soil textures tested had well defined distinctive characteristics. Final multivariate analysis is pending.
Resumo:
We consider dynamical properties for an ensemble of classical particles confined to an infinite box of potential and containing a time-dependent potential well described by different nonlinear functions. For smooth functions, the phase space contains chaotic trajectories, periodic islands and invariant spanning curves preventing the unlimited particle diffusion along the energy axis. Average properties of the chaotic sea are characterised as a function of the control parameters and exponents describing their behaviour show no dependence on the perturbation functions. Given invariant spanning curves are present in the phase space, a sticky region was observed and show to modify locally the diffusion of the particles. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Despite the scientific achievement of the last decades in the astrophysical and cosmological fields, the majority of the Universe energy content is still unknown. A potential solution to the “missing mass problem” is the existence of dark matter in the form of WIMPs. Due to the very small cross section for WIMP-nuleon interactions, the number of expected events is very limited (about 1 ev/tonne/year), thus requiring detectors with large target mass and low background level. The aim of the XENON1T experiment, the first tonne-scale LXe based detector, is to be sensitive to WIMP-nucleon cross section as low as 10^-47 cm^2. To investigate the possibility of such a detector to reach its goal, Monte Carlo simulations are mandatory to estimate the background. To this aim, the GEANT4 toolkit has been used to implement the detector geometry and to simulate the decays from the various background sources: electromagnetic and nuclear. From the analysis of the simulations, the level of background has been found totally acceptable for the experiment purposes: about 1 background event in a 2 tonne-years exposure. Indeed, using the Maximum Gap method, the XENON1T sensitivity has been evaluated and the minimum for the WIMP-nucleon cross sections has been found at 1.87 x 10^-47 cm^2, at 90% CL, for a WIMP mass of 45 GeV/c^2. The results have been independently cross checked by using the Likelihood Ratio method that confirmed such results with an agreement within less than a factor two. Such a result is completely acceptable considering the intrinsic differences between the two statistical methods. Thus, in the PhD thesis it has been proven that the XENON1T detector will be able to reach the designed sensitivity, thus lowering the limits on the WIMP-nucleon cross section by about 2 orders of magnitude with respect to the current experiments.
Resumo:
In this manuscript we are concerned with functional imaging of the colon to assess the kinetics of a microbicide lubricant. The overarching goal is to understand the distribution of the lubricant in the colon. Such information is crucial for understanding the potential impact of the microbicide on HIV viral transmission. The experiment was conducted by imaging a radiolabeled lubricant distributed in the subject’s colon. The tracer imaging was conducted via single photon emission computed tomography (SPECT), a non-invasive, in-vivo functional imaging technique. We develop a novel principal curve algorithm to construct a three dimensional curve through the colon images. The developed algorithm is tested and debugged on several difficult two dimensional images of familiar curves where the original principal curve algorithm does not apply. The final curve fit to the colon data is compared with experimental sigmoidoscope collection.
Resumo:
Cattle in three experiments were scanned with ultrasound as feeders to measure ribeye area and thickness of fat cover to determine if cattle could be sorted into outcome groups with respect to carcass yield. Sorting the cattle into low fat cover or large ribeye groups resulted in improved carcass yield grades. There were no effects on carcass quality grades related to sorting of the cattle. Cattle with greater fat cover at the beginning of the feeding period were heavier, seemed to be more mature and had less muscle growth during the finishing period. There were no significant differences in gain among the groups, but cattle with more fat cover had poorer feed efficiency. Ultrasound seems to have potential to sort feeder cattle, but before it can be used in practice, growth curves need to be developed to predict final end points of individual cattle.
Resumo:
The susceptibility of clay bearing rocks to weathering (erosion and/or differential degradation) is known to influence the stability of heterogeneous slopes. However, not all of these rocks show the same behaviour, as there are considerable differences in the speed and type of weathering observed. As such, it is very important to establish relationships between behaviour quantified in a laboratory environment with that observed in the field. The slake durability test is the laboratory test most commonly used to evaluate the relationship between slaking behaviour and rock durability. However, it has a number of disadvantages; it does not account for changes in shape and size in fragments retained in the 2 mm sieve, nor does its most commonly used index (Id2) accurately reflect weathering behaviour observed in the field. The main aim of this paper is to propose a simple methodology for characterizing the weathering behaviour of carbonate lithologies that outcrop in heterogeneous rock masses (such as Flysch slopes), for use by practitioners. To this end, the Potential Degradation Index (PDI) is proposed. This is calculated using the fragment size distribution curves taken from material retained in the drum after each cycle of the slake durability test. The number of slaking cycles has also been increased to five. Through laboratory testing of 117 samples of carbonate rocks, extracted from strata in selected slopes, 6 different rock types were established based on their slaking behaviour, and corresponding to the different weathering behaviours observed in the field.