953 resultados para positioning system


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reasons for performing study: Many domestic horses and ponies are sedentary and obese due to confinement to small paddocks and stables and a diet of infrequent, high-energy rations. Severe health consequences can be associated with this altered lifestyle. Objectives: The aims of this study were to investigate the ability of horses to learn to use a dynamic feeder system and determine the movement and behavioural responses of horses to the novel system. Methods: A dynamic feed station was developed to encourage horses to exercise in order to access ad libitum hay. Five pairs of horses (n = 10) were studied using a randomised crossover design with each pair studied in a control paddock containing a standard hay feeder and an experimental paddock containing the novel hay feeder. Horse movement was monitored by a global positioning system (GPS) and horses observed and their ability to learn to use the system and the behavioural responses to its use assessed. Results: With initial human intervention all horses used the novel feeder within 1 h. Some aggressive behaviour was observed between horses not well matched in dominance behaviour. The median distance walked by the horses was less (P = 0.002) during a 4 h period (117 [57–185] m) in the control paddock than in the experimental paddock (630 [509–719] m). Conclusions: The use of an automated feeding system promotes increased activity levels in horses housed in small paddocks, compared with a stationary feeder.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mobile/tower cranes are the most essential forms of construction plant in use in the construction industry but are also the subject of several safety issues. Of these, blind lifting has been found to be one of the most hazardous of crane operations. To improve the situation, a real-time monitoring system that integrates the use of a Global Positioning System (GPS) and Radio Frequency Identification (RFID) is developed. This system aims to identify unauthorized work or entrance of personnel within a pre-defined risk zone by obtaining positioning data of both site workers and the crane. The system alerts to the presence of unauthorized workers within a risk zone——currently defined as 3m from the crane. When this happens, the system suspends the power of the crane and a warning signal is generated to the safety management team. In this way the system assists the safety management team to manage the safety of hundreds of workers simultaneously. An onsite trial with debriefing interviews is presented to illustrate and validate the system in use.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, an integrated inter-vehicles wireless communications and positioning system supporting alternate positioning techniques is proposed to meet the requirements of safety applications of Cooperative Intelligent Transportation Systems (C-ITS). Recent advances have repeatedly demonstrated that road safety problems can be to a large extent addressed via a range of technologies including wireless communications and positioning in vehicular environments. The novel communication stack utilizing a dedicated frequency spectrum (e.g. at 5.9 GHz band), known as Dedicated Short-Range Communications (DSRC), has been particularly designed for Wireless Access in Vehicular Environments (WAVE) to support safety applications in highly dynamic environments. Global Navigation Satellite Systems (GNSS) is another essential enabler to support safety on rail and roads. Although current vehicle navigation systems such as single frequency Global Positioning System (GPS) receivers can provide route guidance with 5-10 meters (road-level) position accuracy, positioning systems utilized in C-ITS must provide position solutions with lane-level and even in-lane-level accuracies based on the requirements of safety applications. This article reviews the issues and technical approaches that are involved in designing a vehicular safety communications and positioning architecture; it also provides technological solutions to further improve vehicular safety by integrating the DSRC and GNSS-based positioning technologies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper provides a three-layered framework to monitor the positioning performance requirements of Real-time Relative Positioning (RRP) systems of the Cooperative Intelligent Transport Systems (C-ITS) that support Cooperative Collision Warning (CCW) applications. These applications exploit state data of surrounding vehicles obtained solely from the Global Positioning System (GPS) and Dedicated Short-Range Communications (DSRC) units without using other sensors. To this end, the paper argues the need for the GPS/DSRC-based RRP systems to have an autonomous monitoring mechanism, since the operation of CCW applications is meant to augment safety on roads. The advantages of autonomous integrity monitoring are essential and integral to any safety-of-life system. The autonomous integrity monitoring framework proposed necessitates the RRP systems to detect/predict the unavailability of their sub-systems and of the integrity monitoring module itself, and, if available, to account for effects of data link delays and breakages of DSRC links, as well as of faulty measurement sources of GPS and/or integrated augmentation positioning systems, before the information used for safety warnings/alarms becomes unavailable, unreliable, inaccurate or misleading. Hence, a monitoring framework using a tight integration and correlation approach is proposed for instantaneous reliability assessment of the RRP systems. Ultimately, using the proposed framework, the RRP systems will provide timely alerts to users when the RRP solutions cannot be trusted or used for the intended operation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Bhutan has reduced its malaria incidence significantly in the last 5 years, and is aiming for malaria elimination by 2016. To assist with the management of the Bhutanese malaria elimination programme a spatial decision support system (SDSS) was developed. The current study aims to describe SDSS development and evaluate SDSS utility and acceptability through informant interviews. Methods: The SDSS was developed based on the open-source Quantum geographical information system (QGIS) and piloted to support the distribution of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) in the two sub-districts of Samdrup Jongkhar District. It was subsequently used to support reactive case detection (RACD) in the two sub-districts of Samdrup Jongkhar and two additional sub-districts in Sarpang District. Interviews were conducted to ascertain perceptions on utility and acceptability of 11 informants using the SDSS, including programme and district managers, and field workers. Results: A total of 1502 households with a population of 7165 were enumerated in the four sub-districts, and a total of 3491 LLINs were distributed with one LLIN per 1.7 persons. A total of 279 households representing 728 residents were involved with RACD. Informants considered that the SDSS was an improvement on previous methods for organizing LLIN distribution, IRS and RACD, and could be easily integrated into routine malaria and other vector-borne disease surveillance systems. Informants identified some challenges at the programme and field level, including the need for more skilled personnel to manage the SDSS, and more training to improve the effectiveness of SDSS implementation and use of hardware. Conclusions: The SDSS was well accepted and informants expected its use to be extended to other malaria reporting districts and other vector-borne diseases. Challenges associated with efficient SDSS use included adequate skills and knowledge, access to training and support, and availability of hardware including computers and global positioning system receivers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis describes the design and implementation of a reliable centimeter-level indoor positioning system fully compatible with a conventional smartphone. The proposed system takes advantage of the smartphone audio I/O and processing capabilities to perform acoustic ranging in the audio band using non-invasive audio signals and it has been developed having in mind applications that require high accuracy, such as augmented reality, virtual reality, gaming and audio guides. The system works in a distributed operation mode, i.e. each smartphone is able to obtain its own position using only acoustic signals. To support the positioning system, a Wireless Sensor Network (WSN) of synchronized acoustic beacons is used. To keep the infrastructure in sync we have developed an Automatic Time Synchronization and Syntonization (ATSS) protocol with a standard deviation of the sync offset error below 1.25 μs. Using an improved Time Difference of Arrival (TDoA) estimation approach (which takes advantage of the beacon signals’ periodicity) and by performing Non-Line-of-Sight (NLoS) mitigation, we were able to obtain very stable and accurate position estimates with an absolute mean error of less than 10 cm in 95% of the cases and a mean standard deviation of 2.2 cm for a position refresh period of 350 ms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Acoustic Oceanographic Buoy (AOB) Telemetry System has been designed to meet acoustic rapid environmental assessment requirements. It uses a standard institute of Electrical and Electronics Engineers 802.11 wireless local area network (WLAN) to integrate the air radio network (RaN) and a hydrophone array and acoustic source to integrate the underwater acoustic network (AcN). It offers advantages including local data storage, dedicated signal processing, and global positioning system (GPS) timing and localization. The AOB can also be integrated with other similar systems, due to its WLAN transceivers, to form a flexible network and perform on-line high speed data transmissions. The AOB is a reusable system that requires less maintenance and can also work as a salt-water plug-and-play system at sea as it is designed to operate in free drifting mode. The AOB is also suitable for performing distributed digital signal processing tasks due to its digital signal processor facility.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work presents an automatic calibration method for a vision based external underwater ground-truth positioning system. These systems are a relevant tool in benchmarking and assessing the quality of research in underwater robotics applications. A stereo vision system can in suitable environments such as test tanks or in clear water conditions provide accurate position with low cost and flexible operation. In this work we present a two step extrinsic camera parameter calibration procedure in order to reduce the setup time and provide accurate results. The proposed method uses a planar homography decomposition in order to determine the relative camera poses and the determination of vanishing points of detected lines in the image to obtain the global pose of the stereo rig in the reference frame. This method was applied to our external vision based ground-truth at the INESC TEC/Robotics test tank. Results are presented in comparison with an precise calibration performed using points obtained from an accurate 3D LIDAR modelling of the environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Georeferencing is one of the major tasks of satellite-borne remote sensing. Compared to traditional indirect methods, direct georeferencing through a Global Positioning System/inertial navigation system requires fewer and simpler steps to obtain exterior orientation parameters of remotely sensed images. However, the pixel shift caused by geographic positioning error, which is generally derived from boresight angle as well as terrain topography variation, can have a great impact on the precision of georeferencing. The distribution of pixel shifts introduced by the positioning error on a satellite linear push-broom image is quantitatively analyzed. We use the variation of the object space coordinate to simulate different kinds of positioning errors and terrain topography. Then a total differential method was applied to establish a rigorous sensor model in order to mathematically obtain the relationship between pixel shift and positioning error. Finally, two simulation experiments are conducted using the imaging parameters of Chang’ E-1 satellite to evaluate two different kinds of positioning errors. The experimental results have shown that with the experimental parameters, the maximum pixel shift could reach 1.74 pixels. The proposed approach can be extended to a generic application for imaging error modeling in remote sensing with terrain variation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This project involves the design and implementation of a global electronic tracking system intended for use by trans-oceanic vessels, using the technology of the U.S. Government's Global Positioning System (GPS) and a wireless connection to a networked computer. Traditional navigation skills are being replaced with highly accurate electronics. GPS receivers, computers, and mobile communication are becoming common among both recreational and commercial boaters. With computers and advanced communication available throughout the maritime world, information can be shared instantaneously around the globe. This ability to monitor one's whereabouts from afar can provide an increased level of safety and efficiency. Current navigation software seldom includes the capability of providing upto-the-minute navigation information for remote display. Remote access to this data will allow boat owners to track the progress of their boats, land-based organizations to monitor weather patterns and suggest course changes, and school groups to track the progress of a vessel and learn about navigation and science. The software developed in this project allows navigation information from a vessel to be remotely transmitted to a land-based server, for interpretation and deployment to remote users over the Internet. This differs from current software in that it allows the tracking of one vessel by multiple users and provides a means for two-way text messaging between users and the vesseI. Beyond the coastal coverage provided by cellular telephones, mobile communication is advancing rapidly. Current tools such as satellite telephones and single-sideband radio enable worldwide communications, including the ability to connect to the Internet. If current trends continue, portable global communication will be available at a reasonable price and Internet connections on boats will become more common.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

 The presence of a wide areal extent of small-sized village reservoirs offers a considerable potential for the development of culture-based fisheries (CBFs) in Sri Lanka. To this end, this study uses geographical information systems (GISs) and remote sensing (RS) techniques to determine the morphometric and biological characteristics most useful for classifying non-perennial reservoirs for CBF development and for assessing the influence of catchment land-use patterns on potential CBF yields. The reservoir shorelines at full water supply level were mapped with a Global Positioning System to determine shoreline length and reservoir areal extent. The ratio of shoreline length to reservoir extent, which was reported to be a powerful predictor variable of CBF yields, could be reliably quantified using RS techniques. The areal extent of reservoirs, quantified with RS techniques (RS extent), was used to estimate the ratio of forest cover plus scrubland cover to RS extent and was found to be significantly related to the CBF yield (R2 = 0.400; P < 0.05). The results of this study indicated that morphometric characteristics and catchment land-use patterns, which might be viewed as indices of biological productivity, can be quantified using RS and GIS techniques. © 2014 Wiley Publishing Asia Pty Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

GPS precise point positioning (PPP) can provide high precision 3-D coordinates. Combined pseudorange and carrier phase observables, precise ephemeris and satellite clock corrections, together with data from dual frequency receivers, are the key factors for providing such levels of precision (few centimeters). In general, results obtained from PPP are referenced to an arbitrary reference frame, realized from a previous free network adjustment, in which satellite state vectors, station coordinates and other biases are estimated together. In order to obtain consistent results, the coordinates have to be transformed to the relevant reference frame and the appropriate daily transformation parameters must be available. Furthermore, the coordinates have to be mapped to a chosen reference epoch. If a velocity field is not available, an appropriated model, such as NNR-NUVEL-IA, has to be used. The quality of the results provided by this approach was evaluated using data from the Brazilian Network for Continuous Monitoring of the Global Positioning System (RBMC), which was processed using GIPSY-OASIS 11 software. The results obtained were compared to SIRGAS 1995.4 and ITRF2000, and reached precision better than 2cm. A description of the fundamentals of the PPP approach and its application in the integration of regional GPS networks with ITRF is the main purpose of this paper.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ionospheric scintillations are caused by time-varying electron density irregularities in the ionosphere, occurring more often at equatorial and high latitudes. This paper focuses exclusively on experiments undertaken in Europe, at geographic latitudes between similar to 50 degrees N and similar to 80 degrees N, where a network of GPS receivers capable of monitoring Total Electron Content and ionospheric scintillation parameters was deployed. The widely used ionospheric scintillation indices S4 and sigma(phi) represent a practical measure of the intensity of amplitude and phase scintillation affecting GNSS receivers. However, they do not provide sufficient information regarding the actual tracking errors that degrade GNSS receiver performance. Suitable receiver tracking models, sensitive to ionospheric scintillation, allow the computation of the variance of the output error of the receiver PLL (Phase Locked Loop) and DLL (Delay Locked Loop), which expresses the quality of the range measurements used by the receiver to calculate user position. The ability of such models of incorporating phase and amplitude scintillation effects into the variance of these tracking errors underpins our proposed method of applying relative weights to measurements from different satellites. That gives the least squares stochastic model used for position computation a more realistic representation, vis-a-vis the otherwise 'equal weights' model. For pseudorange processing, relative weights were computed, so that a 'scintillation-mitigated' solution could be performed and compared to the (non-mitigated) 'equal weights' solution. An improvement between 17 and 38% in height accuracy was achieved when an epoch by epoch differential solution was computed over baselines ranging from 1 to 750 km. The method was then compared with alternative approaches that can be used to improve the least squares stochastic model such as weighting according to satellite elevation angle and by the inverse of the square of the standard deviation of the code/carrier divergence (sigma CCDiv). The influence of multipath effects on the proposed mitigation approach is also discussed. With the use of high rate scintillation data in addition to the scintillation indices a carrier phase based mitigated solution was also implemented and compared with the conventional solution. During a period of occurrence of high phase scintillation it was observed that problems related to ambiguity resolution can be reduced by the use of the proposed mitigated solution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Global Positioning System (GPS) transmits signals in two frequencies. It allows the correction of the first order ionospheric effect by using the ionosphere free combination. However, the second and third order ionospheric effects, which combined may cause errors of the order of centimeters in the GPS measurements, still remain. In this paper the second and third order ionospheric effects, which were taken into account in the GPS data processing in the Brazilian region, were investigated. The corrected and not corrected GPS data from these effects were processed in the relative and precise point positioning (PPP) approaches, respectively, using Bernese V5.0 software and the PPP software (GPSPPP) from NRCAN (Natural Resources Canada). The second and third order corrections were applied in the GPS data using an in-house software that is capable of reading a RINEX file and applying the corrections to the GPS observables, creating a corrected RINEX file. For the relative processing case, a Brazilian network with long baselines was processed in a daily solution considering a period of approximately one year. For the PPP case, the processing was accomplished using data collected by the IGS FORT station considering the period from 2001 to 2006 and a seasonal analysis was carried out, showing a semi-annual and an annual variation in the vertical component. In addition, a geographical variation analysis in the PPP for the Brazilian region has confirmed that the equatorial regions are more affected by the second and third order ionospheric effects than other regions.