913 resultados para population change
Resumo:
While ecological effects on short-term population dynamics are well understood, their effects over millennia are difficult to demonstrate and convincing evidence is scant. Using coalescent methods, we analysed past population dynamics of three lizard species (Psammodromus hispanicus, P. edwardsianus, P. occidentalis) and linked the results with climate change data covering the same temporal horizon (120 000 years). An increase in population size over time was observed in two species, and in P. occidentalis, no change was observed. Temporal changes in temperature seasonality and the maximum temperature of the warmest month were congruent with changes in population dynamics observed for the three species and both variables affected population density, either directly or indirectly (via a life-history trait). These results constitute the first solid link between ecological change and long-term population dynamics. The results moreover suggest that ecological change leaves genetic signatures that can be retrospectively traced, providing evidence that ecological change is a crucial driver of genetic diversity and speciation.
Resumo:
Concerns about the sustainability of large-scale, direct-drilled RR-soybeans (Glycine max), and RR-maize (Zea mays) under monoculture in central Argentina are growing steadily. An experiment was conducted during three consecutive years to determine the effects of crops and systems (monocultures and strips) and herbicide strategy on weed density, population rate of change (l), b community diversity (H´), crop yields and Land Equivalent Ratio (LER). Not only crops but also crop systems differentially influenced weed densities along their growth and development. For crop harvests, weed densities increased in both maize crop systems as compared to in the one for soybeans, but the lowest increase occurred in soybean strips. Differences were leveled by both herbicide strategies, which achieved 73% efficacy during the critical periods in both crops. l of annual monocotyledonous increased, thus shifting the weed community composition. Species richness and H´ were not affected by crop systems, but both herbicide strategies, particularly POST, either in soybeans in monoculture or in maize strips, significantly enhanced H´. Crop yields significantly increased in the maize-strip system with POST (Year 1) or PRE (Years 2 and 3) strategies, thus increasing LER above 1. Herbicide Environmental Load treatments fall within very low or low field use rating.
Resumo:
There is growing evidence of changes in the timing of important ecological events, such as flowering in plants and reproduction in animals, in response to climate change, with implications for population decline and biodiversity loss. Recent work has shown that the timing of breeding in wild birds is changing in response to climate change partly because individuals are remarkably flexible in their timing of breeding. Despite this work, our understanding of these processes in wild populations remains very limited and biased towards species from temperate regions. Here, we report the response to changing climate in a tropical wild bird population using a long-term dataset on a formerly critically endangered island endemic, the Mauritius kestrel. We show that the frequency of spring rainfall affects the timing of breeding, with birds breeding later in wetter springs. Delays in breeding have consequences in terms of reduced reproductive success as birds get exposed to risks associated with adverse climatic conditions later on in the breeding season, which reduce nesting success. These results, combined with the fact that frequency of spring rainfall has increased by about 60 per cent in our study area since 1962, imply that climate change is exposing birds to the stochastic risks of late reproduction by causing them to start breeding relatively late in the season.
Resumo:
Human population growth and resource use, mediated by changes in climate, land use, and water use, increasingly impact biodiversity and ecosystem services provision. However, impacts of these drivers on biodiversity and ecosystem services are rarely analyzed simultaneously and remain largely unknown. An emerging question is how science can improve the understanding of change in biodiversity and ecosystem service delivery and of potential feedback mechanisms of adaptive governance. We analyzed past and future change in drivers in south-central Sweden. We used the analysis to identify main research challenges and outline important research tasks. Since the 19th century, our study area has experienced substantial and interlinked changes; a 1.6°C temperature increase, rapid population growth, urbanization, and massive changes in land use and water use. Considerable future changes are also projected until the mid-21st century. However, little is known about the impacts on biodiversity and ecosystem services so far, and this in turn hampers future projections of such effects. Therefore, we urge scientists to explore interdisciplinary approaches designed to investigate change in multiple drivers, underlying mechanisms, and interactions over time, including assessment and analysis of matching-scale data from several disciplines. Such a perspective is needed for science to contribute to adaptive governance by constantly improving the understanding of linked change complexities and their impacts.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A complex of interrelated factors including minority status, poverty, education, health status, and other factors determine the general welfare of children in America, particularly in heavily diverse states such as Texas. Although racial/ethnic status is clearly only a concomitant factor in that determination it is a factor for which future projections are available and for which the relationships with the other factors in the complex can be assessed. After examining the nature of the interrelationships between these factors we utilize direct standardization techniques to examine how the future diversification of the United States and Texas will affect the number of children in poverty, the educational status of the householders in households in which children in poverty live and the health status of children in 2040 assuming that the current relationships between minority status and these socioeconomic factors continue into the future. In the results of the analyses, data are compared with the total population of the United States and Texas in 2040 assumed in the first simulation scenario, to have the race/ethnicity characteristics of 2008 and in the second those projected for 2040 by the U.S. Census Bureau for the nation and by the Texas State Data Center for Texas in 2040. The results show that the diversification of the population could increase the number of children in poverty in the United States by nearly 1.8 million more than would occur with the lower levels of diversification evident in 2008. In addition, poverty would become increasingly concentrated among minority children with minority children accounting for 76.2 percent of all children in poverty by 2040 and with Hispanic children accounting for nearly half of the children in poverty by 2040. Results for educational attainment show an increasing concentration of minority children in households with householders with very low levels of education such that by 2040, 85.2 percent of the increase in the number of children in poverty would be in households with a householder with less than a high school level of education. Finally, the results related to several health status factors show that children in poverty will have a higher prevalence of nearly all health conditions. For example, the number of children with untreated dental conditions could increase to more than 4 million in the United States and to nearly 500,000 in Texas. The results clearly show that improving the welfare of children in America will require concerted efforts to change the poverty, educational, and health status characteristics associated with minority status and particularly Hispanic status. Failing to do so will lead to a future in which America’s children are increasingly impoverished, more poorly educated, and less healthy and which, as a result, is an America with a more tentative future.
Resumo:
A long-standing question in Quaternary paleontology is whether climate-induced, population-level phenotypic change is a result of large-scale migration or evolution in isolation. To directly measure genetic variation through time, ancient DNA and morphologic variation was measured over 2,400 years in a Holocene sequence of pocket gophers (Thomomys talpoides) from Lamar Cave, Yellowstone National Park, Wyoming. Ancient specimens and modern samples collected near Lamar Cave share mitochondrial cytochrome b sequences that are absent from adjacent localities, suggesting that the population was isolated for the entire period. In contrast, diastemal length, a morphologic character correlated with body size and nutritional level, changed predictably in response to climatic change. Our results demonstrate that small mammal populations can experience the long-term isolation assumed by many theoretical models of microevolutionary change.
Resumo:
Climate change affects on insect populations in many ways: it can cause a shift in geographical spread, abundance, or diversity, it can change the location, the timing and the magnitude of outbreaks of pests and it can define the phenological or even the genetic properties of the species. Long-time investigations of special insect populations, simulation models and scenario studies give us very important information about the response of the insects far away and near to our century. Getting to know the potential responses of insect populations to climate change makes us possible to evaluate the adaptation of pest management alternatives as well as to formulate our future management policy. In this paper we apply two simple models, in order to introduce a complex case study for a Sycamore lace bug population. We test how the model works in case the whether conditions are very different from those in our days. Thus, besides we can understand the processes that happen in present, we can analyze the effects of a possible climate change, as well.
Resumo:
La dinámica demográfica ha sido modelada con ecuaciones diferenciales desde que Malthus comenzó sus estudios hace más de doscientos años atrás. Los modelos convencionales siempre tratan relaciones entre especies como estáticas, denotando sólo su dependencia durante un período fijo del tiempo, aunque sea conocido que las relaciones entre especies pueden cambiar con el tiempo. Aquí proponemos un modelo para la dinámica demográfica que incorpora la evolución con el tiempo de las interacciones entre especies. Este modelo incluye una amplia gama de interacciones, de depredador-presa a las relaciones mutualistas, ya sea obligada o facultativa. El mecanismo que describimos permite la transición de una clase de relación entre especies a algún otro, según algunos parámetros externos fijados por el contexto. Estas transiciones podrían evitar la extinción de una de las especies, si esto termina por depender demasiado del ambiente o su relación con las otras especies.
Resumo:
Roads represent a new source of mortality due to animal-vehicle risk of collision threatening log-term populations’ viability. Risk of road-kill depends on species sensitivity to roads and their specific life-history traits. The risk of road mortality for each species depends on the characteristics of roads and bioecological characteristics of the species. In this study we intend to know the importance of climatic parameters (temperature and precipitation) together with traffic and life history traits and understand the role of drought in barn owl population viability, also affected by road mortality in three scenarios: high mobility, high population density and the combination of previous scenarios (mixed) (Manuscript). For the first objective we correlated the several parameters (climate, traffic and life history traits). We used the most correlated variables to build a predictive mixed model (GLMM) the influence of the same. Using a population model we evaluated barn owl population viability in all three scenarios. Model revealed precipitation, traffic and dispersal have negative relationship with road-kills, although the relationship was not significant. Scenarios showed different results, high mobility scenario showed greater population depletion, more fluctuations over time and greater risk of extinction. High population density scenario showed a more stable population with lower risk of extinction and mixed scenario showed similar results as first scenario. Climate seems to play an indirect role on barn owl road-kills, it may influence prey availability which influences barn owl reproductive success and activity. Also, high mobility scenario showed a greater negative impact on viability of populations which may affect their ability and resilience to other stochastic events. Future research should take in account climate and how it may influence species life cycles and activity periods for a more complete approach of road-kills. Also it is important to make the best mitigation decisions which might include improving prey quality habitat.