939 resultados para polyunsaturated fatty acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipids are important for cell function and survival, but abnormal concentrations may lead to various diseases. Cholesterol homeostasis is greatly dependent on the active transport by membrane proteins, whose activities coordinate lipid status with cellular function. Intestinal Niemann-Pick C1-Like 1 protein (NPC1L1) and scavenger receptor B1 (SR-B1) participate in the uptake of extracellular cholesterol, whereas ATP binding cassette A1 (ABCA1) mediates the efflux of excessive intracellular cholesterol. Caveolin-1 binds cholesterol and fatty acids (FA) and participates in cholesterol trafficking. Sterol response element binding protein-2 (SREBP-2) is a sensor that regulates intracellular cholesterol synthesis. Given that cholesterol is a constituent of chylomicrons, whose synthesis is enhanced with an increased FA supply, we tested the hypothesis that feeding polyunsaturated FA (PUFA)-enriched diets in treatment of canine chronic enteropathies alters the mRNA expression of genes involved in cholesterol homeostasis. Using quantitative reverse transcriptase polymerase chain reaction (RT-PCR), we compared the mRNA abundance of NPC1L1, SR-B1, ABCA1, caveolin-1, and SREBP-2 in duodenal mucosal biopsies of dogs with food-responsive diarrhea (FRD; n=14) and inflammatory bowel disease (IBD; n=7) before and after treatment with cholesterol-free PUFA-enriched diets and in healthy controls (n=14). The abundance of caveolin-1, ABCA1, and SREBP-2 were altered by PUFA-enriched diets (P<0.05), whereas that of NPC1L1 and SR-B1 mRNA remained unchanged. The gene expression of caveolin-1, ABCA1, and SREBP-2 was down-regulated (P<0.05) by PUFA-enriched diets in IBD dogs only. Our results suggest that feeding PUFA-enriched diets may alter cholesterol homeostasis in duodenal mucosal cells of dogs suffering from IBD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ω3-polyunsaturated fatty acids (ω3-PUFAs) are known to exert anti-inflammatory effects in various disease models although their direct targets are only poorly characterized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION The omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are the immediate precursors to a number of important mediators of immunity, inflammation and bone function, with products of omega-6 generally thought to promote inflammation and favour bone resorption. Western diets generally provide a 10 to 20-fold deficit in omega-3 PUFAs compared with omega-6, and this is thought to have contributed to the marked rise in incidence of disorders of modern human societies, such as heart disease, colitis and perhaps osteoporosis. Many of our food production animals, fed on grains rich in omega-6, are also exposed to a dietary deficit in omega-3, with perhaps similar health consequences. Bone fragility due to osteoporotic changes in laying hens is a major economic and welfare problem, with our recent estimates of breakage rates indicating up to 95% of free range hens suffer breaks during lay. METHODS Free range hens housed in full scale commercial systems were provided diets supplemented with omega-3 alpha linolenic acid, and the skeletal benefits were investigated by comparison to standard diets rich in omega-6. RESULTS There was a significant 40-60% reduction in keel bone breakage rate, and a corresponding reduction in breakage severity in the omega-3 supplemented hens. There was significantly greater bone density and bone mineral content, alongside increases in total bone and trabecular volumes. The mechanical properties of the omega-3 supplemented hens were improved, with strength, energy to break and stiffness demonstrating significant increases. Alkaline phosphatase (an osteoblast marker) and tartrate-resistant acid phosphatase (an osteoclast marker) both showed significant increases with the omega-3 diets, indicating enhanced bone turnover. This was corroborated by the significantly lower levels of the mature collagen crosslinks, hydroxylysyl pyridinoline, lysyl pyridinoline and histidinohydroxy-lysinonorleucine, with a corresponding significant shift in the mature:immature crosslink ratio. CONCLUSIONS The improved skeletal health in laying hens corresponds to as many as 68million fewer hens suffering keel fractures in the EU each year. The biomechanical and biochemical evidence suggests that increased bone turnover has enhanced the bone mechanical properties, and that this may suggest potential benefits for human osteoporosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer’s disease is a neurodegenerative disorder which has been characterised with genetic (apolipoproteins), protein (ß-amyloid and tau) and lipid oxidation/metabolism alterations in its pathogenesis. In conjunction with the Dementia Research Group, Bristol University, investigation into genetic, protein and lipid oxidation in Alzheimer’s disease was conducted. A large sample cohort using the double-blind criteria, along with various clinical and chemical data sets were used to improve the statistical analysis and therefore the strength of this particular study. Bristol University completed genetic and protein analysis with lipid oxidation assays performed at Aston University. Lipid oxidation is a complex process that creates various biomarkers, from transient intermediates, to short carbon chain products and cyclic ring structures. Quantification of these products was performed on lipid extracts of donated clinical diseased and non-diseased frontal and temporal brain regions, from the Brain Bank within Frenchay Hospital. The initial unoxidised fatty acids, first transient oxidation intermediates the conjugated dienes and lipid hydroperoxides, the endpoint aldehyde biomarkers and finally the cyclic isoprostanes and neuroprostanes were determined to investigate lipid oxidation in Alzheimer’s. Antioxidant levels were also investigated to observe the effect of oxidation on the defence pathways. Assays utilised in this analysis included; fatty acid composition by GC-FID, conjugated diene levels by HPLC-UV and UV-spec, lipid hydroperoxide levels by FOX, aldehyde content by TBARs, antioxidant status by TEAC and finally isoprostane and neuroprostane quantification using a newly developed EI-MS method. This method involved the SIM of specific ions from F-ring isoprostane and neuroprostane fragmentation, which enabled EI-MS to be used for their quantification. Analyses demonstrated that there was no significant difference between control and Alzheimer samples across all the oxidation biomarkers for both brain regions. Antioxidants were the only marker that showed a clear variance; with Alzheimer samples having higher levels than the age matched controls. This unique finding is supported with the observed lower levels of lipid oxidation biomarkers in Alzheimer brain region samples. The increased antioxidant levels indicate protection against oxidation which may be a host response to counteract the oxidative pathways, but this requires further investigation. In terms of lipid oxidation, no definitive markers or target site for therapeutic intervention have been revealed. This study concludes that dietary supplementation of omega-3 fatty acids or antioxidants would most likely be ineffective against Alzheimer disease, although it may support improvement in other areas of general health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polyunsaturated fatty acid (PUFA) requirements of three transplantable murine colon adenocarcinomas, the MAC13, MAC16 and MAC26, were evaluated in vitro and in vivo. When serum concentrations became growth limiting in vitro, proliferation of the MAC13 and MAC26 cell lines was stimulated by linoleic acid (LA) at 18μM and arachidonic acid (AA) at 16 or 33μM respectively. This was not demonstrated by the MAC16 cell line. MAC13 and MAC26 cells were found to be biochemically fatty acid deficient as measured by the formation of Mead acid (20:3 n-9), but the MAC16 cells were not. In vivo the growth of the MAC26 tumour was stimulated by daily oral administration of LA between 0.4-2.0g/kg. There was a threshold value of 0.4g/kg for the stimulation of MAC26 tumour growth, above which there was no further increase in tumour growth, and below which no increase in tumour growth was observed. This increased tumour growth was due to the stimulation of tumour cell proliferation in all areas of the tumour, with no effect on the cell loss factor. The growth of the MAC13, MAC16, and MAC26 cell lines in vitro were more effectively inhibited by lipoxygenase (LO) inhibitors than the cyclooxygenase inhibitor indomethacin. The specific 5-LO inhibitor Zileuton and the leukotriene D4 antagonist L-660,711 were less effective inhibitors of MAC cell growth in vitro than the less specific LO inhibitors BWA4C, BWB70C and CV6504. Studies of the hyroxyeicosatetraenoic acids (HETEs) produced from exogenous AA in these cells, suggested that a balance of eicosanoids produced from 5-LO, 12-LO and 15-LO pathways was required for cell proliferation. In vivo BWA4C, BWB70C and CV6504 demonstrated antitumour action against the MAC26 tumour between 20-50mg/kg/day. CV6504 also inhibited the growth of the MAC 13 tumour in vivo with an optimal effect between 5-10mg/kg/day. The antitumour action against the MAC16 tumour was also accompanied by a reduction in the tumour-induced host body weight loss at 10-25mg/kg/day. The antitumour action of CV6504 in all three tumour models was partially reversed by daily oral administration of 1.0g/kg LA. Studies of the AA metabolism in tumour homogenates suggested that this profound antitumour action, against what are generally chemoresistant tumours, was due to inhibition of eicosanoid production through LO pathways. As a result of these studies, CV6504 has been proposed for stage I./II. clinical trials against pancreatic cancer by the Cancer Research Campaign. This will be the first LO inhibitor entering the clinic as a therapeutic agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meal fatty acids have been shown to modulate the size and composition of triacylglycerol (TAG)-rich lipoproteins influencing the magnitude and duration of the postprandial plasma TAG response. As a result there is considerable interest in the origin of these meal fatty-acid induced differences in particle composition. Caco-2 cells were incubated over 4 days with fatty acid mixtures resembling the composition of saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA)-rich meals fed in a previous postprandial study to determine their impact on lipoprotein synthesis and secretion. The MUFA- and PUFA-rich mixtures supported greater intracellular TAG, but not cholesterol accumulation compared with the SFA-rich mixture (P < 0.001). The MUFA-rich mixture promoted significantly greater TAG and cholesterol secretion than the other mixtures and significantly more apolipoprotein B-100 secretion than the PUFA-rich mixture (P < 0.05). Electron microscopy revealed the SFA-rich mixture had led to unfavourable effects on cellular morphology, compared with the unsaturated fatty acid-rich mixtures. Our findings suggest the MUFA-rich mixture, may support the formation of a greater number of TAG-rich lipoproteins, which is consistent with indirect observations from our human study. Our electron micrographs are suggestive that some endocytotic uptake of MUFA-rich taurocholate micelles may promote greater lipoprotein synthesis and secretion in Caco-2 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major polyunsaturated fatty acid (PUFA) in the western diet is linoleic acid (LA), which is considered to be the major source of tissue arachidonic acid (AA), the principal precursor for the vaso-active eicosanoids via the cyclooxygenase enzymatic pathway. However, dietary AA may contribute significantly to tissue levels of AA in humans, leading to an increase in the production of eicosanoids, particularly the platelet aggregating, vasoconstricting, thromboxane (TXA2), hence increasing thrombosis risk. The aims of this study were to determine the extent to which dietary AA contributed to prostacyclin (PGI2) and TXA2 production in vivo and whether dietary long chain (LC) n-3 PUFA have a modulating influence on the metabolism of AA to these vaso-active eicosanoids. A gas chromatography -mass spectrometry (GCMS) method for urinary PGI2-M determination and a tandem GCMS/MS method for urinary TXA2-M determination were perfected for use within our laboratory (with the assistance of Dr Howard Knapp, University of Iowa and Professor Reinhard Lorenz, Ludwig Maximilian's University, Munich, respectively). An initial animal study compared the in vitro production of PGI2 by aorta segments with the whole body in vivo production of PGI2 in rats fed ethyl arachidonate or the ethyl ester of eicosapentaenoic acid (EPA), at levels many times higher than encountered in human diets. During AA feeding both measures of PGI2 increased, although in vitro TXA2 production was not affected. EPA feeding lowered in vitro TXA2 and in vivo PGI2. Prior to determining the effects of AA and LC n-3 PUFA in humans, a study was carried out to determine the AA and LC n-3 PUFA content of foods and from these, an estimate of the mean daily intake of AA and other LC PUFA. Eggs, organ meats and paté were found to be the richest sources of AA. Of the meat and fish analysed, white meat was found to be relatively rich in AA but poor in LC n-3 PUFA. Lean red meat, particularly kangaroo had similar LC n-3 PUFA and AA content. Fish, although rich in AA, had extremely high levels of LC n-3 PUFA. The calculated mean daily intakes of AA in Australian adults was 130mg (males) and 96mg (females). For total LC n-3 PUFA intake, the mean daily values were 247mg (males) and 197mg (females). Two human pilot studies involving dietary intervention trials examined the effects of dietary AA and AA plus long chain n-3 PUFA on thrombosis risk, gauged by the change in the ratio of PGI2 / TXA2 as well as alterations to other recognised risk factors, such as lipoprotein lipids and platelet aggregation. The desired dietary amounts of AA and LC n-3 PUFA were achieved in the first study by combining food items with known levels of each fatty acid. In the second study, where a diet with approximately equal quantities of AA and LC n-3 PUFA was being examined, kangaroo meat was consumed, following a low-fat vegetarian diet used as a baseline. Diets rich in AA alone (~500mg/day) increased plasma phospholipid (PL) AA levels, PGIi and TXA2 production. When foods containing equal quantities of AA and EPA (∼500mg/day of each) were fed to subjects PGI2 increased, with no change in TXAs production. Low fat vegetarian diets lowered PGI2 production, the level of which was reestablished by an AA rich diet (∼300mg AA/day + ∼260mg/day LC n-3 PUFA) of kangaroo meat. However, TXA2 production was not altered. A final, larger human dietary intervention trial then examined the effects of diets relatively rich in AA alone, AA plus LC n-3 PUFA and LC n-3 PUFA, on the ratio of PGI2/TXA2- The dietary sources of these fatty acids were white meat, red meat and fish, respectively. Each contained a mean level of AA of ∼140mg/day, with varying LC n-3 PUFA levels (59, 161 and 3380mg/day, respectively). Neither meat diet altered PGI2 or TXA2 production significantly, despite increasing serum PL AA levels. The fish diet resulted in a decrease in the serum and platelet PL AA/EPA ratio and TXA2 production, thus increasing the PGI2 / TXA2 ratio. These results would indicate that stores of AA in the body are sufficiently high to have effectively saturated the cyclooxygenase pathway for production of both PGI2 and TXA2, thus making any small change in the plasma level of AA due to 'normal' dietary levels, inconsequential. However, as seen in the rat study and the two pilot studies higher dietary levels of AA can increase both PGI2 and TXA2 production. Increases in platelet levels of EPA and DHA were associated with a decrease in TXA2 production, or the maintenance of a constant TXA2 level, while AA tissue levels and PGI2 production increased. This suggests a possible inhibitory effect of LC n-3 PUFA on the metabolism of AA to TXA2, particularly in platelets. From these short term studies, conducted over 2-3 week periods, it can be concluded that diets rich in lean meats can raise plasma AA levels but do not affect TXA2 or PGI2 production, hence are not pro-thrombotic. Diets rich in long chain n-3 PUFA from fish, raise plasma EPA and DHA levels, lower TXA2 production and are anti-thrombotic. Diets which combine equal quantities of AA and LC n-3 PUFA appear to increase PGI2 production while keeping TXA2 production constant. In order for these LC PUFA to have a significant effect on eicosanoid production the dietary intake of these fatty acids through foods such as red meat or white meat would have to be higher than average current Australian consumption levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alterations in cognitive function are characteristic of the aging process in humans and other animals. However, the nature of these age related changes in cognition is complex and is likely to be influenced by interactions between genetic predispositions and environmental factors resulting in dynamic fluctuations within and between individuals. These inter and intra-individual fluctuations are evident in both so-called normal cognitive aging and at the onset of cognitive pathology. Mild Cognitive Impairment (MCI), thought to be a prodromal phase of dementia, represents perhaps the final opportunity to mitigate cognitive declines that may lead to terminal conditions such as dementia. The prognosis for people with MCI is mixed with the evidence suggesting that many will remain stable within 10-years of diagnosis, many will improve, and many will transition to dementia. If the characteristics of people who do not progress to dementia from MCI can be identified and replicated in others it may be possible to reduce or delay dementia onset, thus reducing a growing personal and public health burden. Furthermore, if MCI onset can be prevented or delayed, the burden of cognitive decline in aging populations worldwide may be reduced. A cognitive domain that is sensitive to the effects of advancing age, and declines in which have been shown to presage the onset of dementia in MCI patients, is executive function. Moreover, environmental factors such as diet and physical activity have been shown to affect performance on tests of executive function. For example, improvements in executive function have been demonstrated as a result of increased aerobic and anaerobic physical activity and, although the evidence is not as strong, findings from dietary interventions suggest certain nutrients may preserve or improve executive functions in old age. These encouraging findings have been demonstrated in older adults with MCI and their non-impaired peers. However, there are some gaps in the literature that need to be addressed. For example, little is known about the effect on cognition of an interaction between diet and physical activity. Both are important contributors to health and wellbeing, and a growing body of evidence attests to their importance in mental and cognitive health in aging individuals. Yet physical activity and diet are rarely considered together in the context of cognitive function. There is also little known about potential underlying biological mechanisms that might explain the physical activity/diet/cognition relationship. The first aim of this program of research was to examine the individual and interactive role of physical activity and diet, specifically long chain polyunsaturated fatty acid consumption(LCn3) as predictors of MCI status. The second aim is to examine executive function in MCI in the context of the individual and interactive effects of physical activity and LCn3.. A third aim was to explore the role of immune and endocrine system biomarkers as possible mediators in the relationship between LCn3, physical activity and cognition. Study 1a was a cross-sectional analysis of MCI status as a function of erythrocyte proportions of an interaction between physical activity and LCn3. The marine based LCn3s eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have both received support in the literature as having cognitive benefits, although comparisons of the relative benefits of EPA or DHA, particularly in relation to the aetiology of MCI, are rare. Furthermore, a limited amount of research has examined the cognitive benefits of physical activity in terms of MCI onset. No studies have examined the potential interactive benefits of physical activity and either EPA or DHA. Eighty-four male and female adults aged 65 to 87 years, 50 with MCI and 34 without, participated in Study 1a. A logistic binary regression was conducted with MCI status as a dependent variable, and the individual and interactive relationships between physical activity and either EPA or DHA as predictors. Physical activity was measured using a questionnaire and specific physical activity categories were weighted according to the metabolic equivalents (METs) of each activity to create a physical activity intensity index (PAI). A significant relationship was identified between MCI outcome and the interaction between the PAI and EPA; participants with a higher PAI and higher erythrocyte proportions of EPA were more likely to be classified as non-MCI than their less active peers with less EPA. Study 1b was a randomised control trial using the participants from Study 1a who were identified with MCI. Given the importance of executive function as a determinant of progression to more severe forms of cognitive impairment and dementia, Study 1b aimed to examine the individual and interactive effect of physical activity and supplementation with either EPA or DHA on executive function in a sample of older adults with MCI. Fifty male and female participants were randomly allocated to supplementation groups to receive 6-months of supplementation with EPA, or DHA, or linoleic acid (LA), a long chain polyunsaturated omega-6 fatty acid not known for its cognitive enhancing properties. Physical activity was measured using the PAI from Study 1a at baseline and follow-up. Executive function was measured using five tests thought to measure different executive function domains. Erythrocyte proportions of EPA and DHA were higher at follow-up; however, PAI was not significantly different. There was also a significant improvement in three of the five executive function tests at follow-up. However, regression analyses revealed that none of the variance in executive function at follow-up was predicted by EPA, DHA, PAI, the EPA by PAI interaction, or the DHA by PAI interaction. The absence of an effect may be due to a small sample resulting in limited power to find an effect, the lack of change in physical activity over time in terms of volume and/or intensity, or a combination of both reduced power and no change in physical activity. Study 2a was a cross-sectional study using cognitively unimpaired older adults to examine the individual and interactive effects of LCn3 and PAI on executive function. Several possible explanations for the absence of an effect were identified. From this consideration of alternative explanations it was hypothesised that post-onset interventions with LCn3 either alone or in interation with self-reported physical activity may not be beneficial in MCI. Thus executive function responses to the individual and interactive effects of physical activity and LCn3 were examined in a sample of older male and female adults without cognitive impairment (n = 50). A further aim of study 2a was to operationalise executive function using principal components analysis (PCA) of several executive function tests. This approach was used firstly as a data reduction technique to overcome the task impurity problem, and secondly to examine the executive function structure of the sample for evidence of de-differentiation. Two executive function components were identified as a result of the PCA (EF 1 and EF 2). However, EPA, DHA, the PAI, or the EPA by PAI or DHA by PAI interactions did not account for any variance in the executive function components in subsequent hierarchical multiple regressions. Study 2b was an exploratory correlational study designed to explore the possibility that immune and endocrine system biomarkers may act as mediators of the relationship between LCn3, PAI, the interaction between LCn3 and PAI, and executive functions. Insulin-like growth factor-1 (IGF-1), an endocrine system growth hormone, and interleukin-6 (IL-6) an immune system cytokine involved in the acute inflammatory response, have both been shown to affect cognition including executive functions. Moreover, IGF-1 and IL-6 have been shown to be antithetical in so far as chronically increased IL-6 has been associated with reduced IGF-1 levels, a relationship that has been linked to age related morbidity. Further, physical activity and LCn3 have been shown to modulate levels of both IGF-1 and IL-6. Thus, it is possible that the cognitive enhancing effects of LCn3, physical activity or their interaction are mediated by changes in the balance between IL-6 and IGF-1. Partial and non-parametric correlations were conducted in a subsample of participants from Study 2a (n = 13) to explore these relationships. Correlations of interest did not reach significance; however, the coefficients were quite large for several relationships suggesting studies with larger samples may be warranted. In summary, the current program of research found some evidence supporting an interaction between EPA, not DHA, and higher energy expenditure via physical activity in differentiating between older adults with and without MCI. However, a RCT examining executive function in older adults with MCI found no support for increasing EPA or DHA while maintaining current levels of energy expenditure. Furthermore, a cross-sectional study examining executive function in older adults without MCI found no support for better executive function performance as a function of increased EPA or DHA consumption, greater energy expenditure via physical activity or an interaction between physical activity and either EPA or DHA. Finally, an examination of endocrine and immune system biomarkers revealed promising relationships in terms of executive function in non-MCI older adults particularly with respect to LCn3 and physical activity. Taken together, these findings demonstrate a potential benefit of increasing physical activity and LCn3 consumption, particularly EPA, in mitigating the risk of developing MCI. In contrast, no support was found for a benefit to executive function as a result of increased physical activity, LCn3 consumption or an interaction between physical activity and LCn3, in participants with and without MCI. These results are discussed with reference to previous findings in the literature including possible limitations and opportunities for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical and chemical properties of biodiesel are influenced by structural features of the fatty acids, such as chain length, degree of unsaturation and branching of the carbon chain. This study investigated if microalgal fatty acid profiles are suitable for biodiesel characterization and species selection through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Fatty acid methyl ester (FAME) profiles were used to calculate the likely key chemical and physical properties of the biodiesel [cetane number (CN), iodine value (IV), cold filter plugging point, density, kinematic viscosity, higher heating value] of nine microalgal species (this study) and twelve species from the literature, selected for their suitability for cultivation in subtropical climates. An equal-parameter weighted (PROMETHEE-GAIA) ranked Nannochloropsis oculata, Extubocellulus sp. and Biddulphia sp. highest; the only species meeting the EN14214 and ASTM D6751-02 biodiesel standards, except for the double bond limit in the EN14214. Chlorella vulgaris outranked N. oculata when the twelve microalgae were included. Culture growth phase (stationary) and, to a lesser extent, nutrient provision affected CN and IV values of N. oculata due to lower eicosapentaenoic acid (EPA) contents. Application of a polyunsaturated fatty acid (PUFA) weighting to saturation led to a lower ranking of species exceeding the double bond EN14214 thresholds. In summary, CN, IV, C18:3 and double bond limits were the strongest drivers in equal biodiesel parameter-weighted PROMETHEE analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]A survey of Canadian retail beef was undertaken with emphasis on the trans fatty acid (TFA) and conjugated linoleic acid (CLA) isomers, and compared with current health recommendations. Thirty striploin steaks were collected in the winter and summer from major grocery stores in Calgary (Alberta, Canada). Steak fatty acid compositions (backfat and longissimus lumborum muscle analysed separately) showed minor seasonal differences with lower total saturates (PB0.05) and higher total monounsaturates (PB 0.01) in winter, but no differences in total polyunsaturated fatty acids. The ratio of n-6 and n-3 polyunsaturated fatty acid in longissimus lumborum averaged 5.8. The average TFA content in longissimus lumborum was 0.128 g 100 g_1 serving size, and 10t-18:1 was found to be the predominant isomer (32% of total trans), while vaccenic acid was second most abundant (15% of total trans). The CLA content in longissimus lumborum was similar to that of backfat, ranging from 0.43 to 0.60% of total fatty acids and rumenic acid represented 60% of total isomers. Overall, there is still room for improvement in the saturated, mono- and polyunsaturated fatty acid composition of Canadian beef to meet general dietary guidelines for human consumption and additional targets should include reducing 10t-18:1 while increasing both rumenic and vaccenic acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous research suggests that low n-3 long-chain polyunsaturated fatty acid (n-3PUFA) status is associated with higher levels of depression in clinical populations. This analysis aimed to investigate the relationship between depressed mood and n-3PUFA status in a non-clinical population. The analysis was conducted on data collected as part of a large randomized controlled trial investigating the impact of n-3PUFA supplementation on depressed mood in a community-based population. On entry into the trial, data on depressed mood were collected using the Depression, Anxiety and Stress Scales (DASS) and the Beck Depression Inventory (BDI). Plasma concentrations of various n-3PUFAs and n-6 long-chain polyunsaturated fatty acids (n-6PUFAs) were obtained from fasting venous blood samples, and various demographics were also measured. Using regression, there was no evidence of an association between either measure of depressed mood and any of the measures of n-3PUFA status or of n-6PUFA: n-3PUFA ratios. Clear associations were also not found when demographic factors were included in the analyses. These findings suggest that n-3PUFAs may not have a role in the aetiology of minor depression. This is also consistent with the results of other studies that have not demonstrated an association between depressed mood and n-3PUFA status in non-clinical populations and epidemiological studies that have not demonstrated an association between depressed mood and n-3PUFA intake in these populations. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado, Aquacultura e Pescas, Faculdade de Ciências e Tecnologias, Universidade do Algarve, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective - The adjusted effect of long-chain polyunsaturated fatty acid (LCPUFA) intake during pregnancy on adiposity at birth of healthy full-term appropriate-for-gestational age neonates was evaluated. Study Design - In a cross-sectional convenience sample of 100 mother and infant dyads, LCPUFA intake during pregnancy was assessed by food frequency questionnaire with nutrient intake calculated using Food Processor Plus. Linear regression models for neonatal body composition measurements, assessed by air displacement plethysmography and anthropometry, were adjusted for maternal LCPUFA intakes, energy and macronutrient intakes, prepregnancy body mass index and gestational weight gain. Result - Positive associations between maternal docosahexaenoic acid intake and ponderal index in male offspring (β=0.165; 95% confidence interval (CI): 0.031–0.299; P=0.017), and between n-6:n-3 LCPUFA ratio intake and fat mass (β=0.021; 95% CI: 0.002–0.041; P=0.034) and percentage of fat mass (β=0.636; 95% CI: 0.125–1.147; P=0.016) in female offspring were found. Conclusion - Using a reliable validated method to assess body composition, adjusted positive associations between maternal docosahexaenoic acid intake and birth size in male offspring and between n-6:n-3 LCPUFA ratio intake and adiposity in female offspring were found, suggesting that maternal LCPUFA intake strongly influences fetal body composition.