41 resultados para polinomi
Resumo:
Dalle rilevazioni PISA condotte dall'OCSE nel 2003, gli studenti finlandesi sono risultati i migliori in Europa in capacità di lettura e competenze matematiche. Vari esperti in didattica si sono quindi interrogati cercando quali aspetti rendessero eccellente il sistema finlandese. Altri, invece, hanno sostenuto che le prove PISA rilevassero solo alcune abilità senza tener conto delle conoscenze apprese a scuola, quindi il successo finlandese potrebbe essere dovuto al caso. Infatti nei test TIMSS, gli alunni finlandesi hanno avuto risultati mediocri. La tesi cerca di spiegare i “segreti” del sistema scolastico finlandese e di confrontarlo con la scuola italiana. Sono state osservate in loco le lezioni di matematica in alcune classi campione di una scuola finlandese all’ottavo e nono anno di scolarità. Si analizza la didattica sotto diversi punti di vista e si confrontano i libri di testo finlandesi e italiani su uno specifico argomento ritenuto di cruciale importanza: i polinomi. Si evidenzia che la differenza nei risultati delle rilevazioni non dipende tanto dalle differenze dei sistemi scolastici quanto all'impostazione culturale dei giovani finlandesi.
Resumo:
In questa tesi studiamo l'effetto Gibbs. Tale fenomeno si manifesta tramite la presenza di sovra-oscillazioni nei polinomi di Fourier di funzioni che presentano discontinuità di prima specie. La differenza tra il massimo ed il minimo del polinomio di Fourier di tali funzioni, in prossimità di un punto di discontinuità della funzione, è strettamente maggiore del salto della funzione in quel punto, anche per n che tende all'infinito. Per attenuare le sovra-oscillazioni delle somme parziali di Fourier si utilizzano le serie di Fejer e si vede come effettivamente il fenomeno di Gibbs scompaia.
Resumo:
Lo scopo del presente lavoro di tesi è l’implementazione di un metodo per la detezione automatica dei contorni dell’esofago in immagini ecografiche intracardiache acquisite durante procedure di ablazione transcatetere per il trattamento della fibrillazione atriale. Il progetto si è svolto in collaborazione con il laboratorio di elettrofisiologia, Unità Operativa di Cardiologia, Dipartimento Cardiovascolare, dell’ospedale ‘’ S. Maria delle Croci ’’ di Ravenna, Azienda Unità Sanitaria Locale della Romagna e si inserisce in un progetto di ricerca più ampio in cui sono stati sviluppati due differenti metodi per il tracciamento automatico della parete posteriore dell’atrio sinistro. L’obiettivo è consentire al clinico il monitoraggio della posizione dell’esofago rispetto all’atrio sinistro per ridurre il rischio di lesioni della parete esofagea. L’idea di base dell’algoritmo è di lavorare sull’immagine per linee di scansione orizzontali, valutando la distribuzione dei livelli di intensità di grigio. Una volta individuati i punti appartenenti alle pareti anteriore e posteriore dell’esofago, sono stati utilizzati dei polinomi rispettivamente del quarto e secondo ordine per interpolare i dati. Per assicurarsi che la detezione sia corretta è stato introdotto un check aggiuntivo che consente la correzione del risultato qualora il clinico non sia soddisfatto, basandosi su input manuale di due punti richiesto all’operatore. L’algoritmo è stato testato su 15 immagini, una per ogni paziente, e i contorni ottenuti sono stati confrontati con i tracciamenti manuali effettuati da un cardiologo per valutare la bontà del metodo. Le metriche di performance e l’analisi statistica attestano l’accuratezza del metodo. Infine sono state calcolate delle misure di interesse clinico, quali la distanza tra parete posteriore dell’atrio sinistro e parete anteriore dell’esofago e la larghezza media di quest’ultimo che risulta comparabile con quanto riportato in letteratura.
Resumo:
La presente tesi è suddivisa in due parti: nella prima parte illustriamo le definizioni e i relativi risultati della teoria delle tabelle di Young, introdotte per la prima volta nel 1900 da Alfred Young; mentre, nella seconda parte, diamo la nozione di numeri Euleriani e di Polinomi Euleriani. Nel primo capitolo abbiamo introdotto i concetti di diagramma di Young e di tabelle di Young standard. Inoltre, abbiamo fornito la formula degli uncini per contare le tabelle di Young della stessa forma. Il primo capitolo è focalizzato sul teorema di Robinson-Schensted, che stabilisce una corrispondenza biunivoca tra le permutazioni di Sn e le coppie di tabelle di Young standard della stessa forma. Ne deriva un'importante conseguenza che consiste nel poter trovare in modo efficiente la massima sottosequenza crescente di una permutazione. Una volta definite le operazioni di evacuazione e "le jeu de taquin" relative alle tabelle di Young, illustriamo una serie di risultati riferibili alla corrispondenza biunivoca R-S che variano in base alla permutazione che prendiamo in considerazione. In particolare, enunciamo il teorema di simmetria di M.P.Schüztenberger, che dimostriamo attraverso la costruzione geometrica di Viennot. Nel secondo capitolo, dopo aver dato la definizione di discesa di una permutazione, descriviamo altre conseguenze della corrispondenza biunivoca R-S: vediamo così che esiste una relazione tra le discese di una permutazione e la coppia di tabelle di Young associata. Abbiamo trattato approfonditamente i numeri Euleriani, indicati con A(n,k) = ]{σ ∈ Sn;d(σ) = k}, dove d(σ) indica il numero di discese di una permutazione. Descriviamo le loro proprietà e simmetrie e vediamo che sono i coefficienti di particolari polinomi, detti Polinomi Euleriani. Infine, attraverso la nozione di eccedenza di una permutazione e la descrizione della mappa di Foata arriviamo a dimostrare un importante risultato: A(n,k) conta anche il numero di permutazioni di Sn con k eccedenze.
Resumo:
Questo elaborato si propone di approfondire lo studio dei campi finiti, in modo particolare soffermandosi sull’esistenza di una base normale per un campo finito, in quanto l'utilizzo di una tale base ha notevoli applicazioni in ambito crittografico. Vengono trattati i seguenti argomenti: elementi di base della teoria dei campi finiti, funzione traccia e funzione norma, basi duali, basi normali. Vengono date due dimostrazioni del Teorema della Base Normale, la seconda delle quali fa uso dei polinomi linearizzati ed è in realtà un po' più generale, in quanto si riferisce ai q-moduli.
Resumo:
In questa tesi vengono studiati anelli commutativi unitari in cui ogni catena ascentente o ogni catena discendente di ideali diventa stazionaria dopo un numero finito di passi. Un anello commutativo unitario R in cui vale la condizione della catena ascendente, ossia ogni catena ascendente di ideali a_1 ⊆ a_2 ⊆ · · · ⊆ R diventa stazionaria dopo un numero finito di passi, o, equivalentemente, in cui ogni ideale è generato da un numero finito di elementi, si dice noetheriano. Questa classe di anelli deve il proprio nome alla matematica tedesca Emmy Noether che, nel 1921, studiando un famoso risultato di Lasker per ideali di anelli di polinomi, si accorse che esso valeva in tutti gli anelli in cui gli ideali sono finitamente generati. Questi anelli giocano un ruolo importante in geometria algebrica, in quanto le varietà algebriche sono luoghi di zeri di polinomi in più variabili a coefficienti in un campo K e le proprietà degli ideali dell’anello K[x_1, . . . , x_n] si riflettono nelle proprietà delle varietà algebriche di K^n. Inoltre, per questi anelli esistono procedure algoritmiche che sono possibili proprio grazie alla condizione della catena ascendente. Un anello commutativo unitario R in cui vale la condizione della catena discendente, ossia ogni ogni catena discendente di ideali . . . a_2 ⊆ a_1 ⊆ R diventa stazionaria dopo un numero finito di passi, si dice artiniano, dal nome del matematico austriaco Emil Artin che li introdusse e ne studiò le proprietà. Il Teorema di Akizuki afferma che un anello commutativo unitario R è artiniano se e solo se è noetheriano di dimensione zero, ossia ogni suo ideale primo è massimale.
Resumo:
Nel seguente elaborato esponiamo la teoria delle matrici ricorsive, ovvero matrici doppiamente infinite in cui ogni riga può essere calcolata ricorsivamente dalla precedente e in particolare mostriamo come questa teoria possa essere utilizzata per ottenere una versione del calcolo umbrale, il quale è idoneo anche allo studio dei polinomi p(x) che assumono valori interi quando la variabile x è un intero. Studieremo alcuni dei risultati del calcolo umbrale come conseguenze delle due principali proprietà delle matrici ricorsive, ovvero la Regola del Prodotto e il Teorema della Doppia Ricorsione.
Resumo:
Il problema inverso di Galois classico consiste nel chiedersi se, dato un gruppo finito G, esista una estensione di Galois del campo dei numeri razionali che abbia come gruppo di Galois il gruppo G. Una volta verificata l'esistenza di una tale estensione poi, si cercano polinomi a coefficienti razionali il cui gruppo di Galois sia G stesso. Noto dall'inizio del diciannovesimo secolo, il problema è tuttora in generale irrisolto, nonostante nel corso degli anni siano stati fatti notevoli progressi. In questa tesi il problema viene affrontato e risolto in alcuni casi particolari: viene mostrata la realizzazione dei gruppi ciclici, dei gruppi abeliani e dei gruppi simmetrici come gruppi di Galois sul campo dei razionali, e vengono dati alcuni esempi di polinomi con tali gruppi di Galois.
Resumo:
Questo elaborato nasce dalla necessità di approfondire, formare e informare su BES e DSA, che è ormai parte della realtà scolastica di oggi ed in continua evoluzione ed aggiornamento. In particolare è utile per entrare nel mondo dell'insegnamento, conoscere e studiare alcune strategie e strumenti didattici che facilitano chi presenta DSA e le conseguenze nell'ambito matematico, in modo tale da evitare il senso di incapacità e inadeguatezza che a volte accompagna questi ragazzi durante gli studi, portandoli ad esperienze negative. Nel primo capitolo si definisce il significato di BES, la sua classificazione e legislazione nel corso degli anni, con un excursus storico che tratta i temi dell'inclusione e integrazione. Nel secondo capitolo si definiscono i DSA e le diverse tipologie del disturbo e si fa riferimento alla Legge 170 del 2010, che prevede misure educative e didattiche e interventi individualizzati e personalizzati da attuare nei confronti di studenti con DSA, previsti nel PDP. Vengono presentati anche i dati raccolti dal MIUR per quanto riguarda le statistiche sulla popolazione scolastica con DSA. Il secondo capitolo si conclude con una visione su quello che è il tema degli stereotipi legati al mondo dei DSA e dei relativi effetti psicologici che ne conseguono. Il terzo capitolo entra nel merito dell'insegnamento della matematica per alunni con discalculia nella scuola secondaria di secondo grado e lo studio di quelle che sono le difficoltà che si possono incontrare. Nel quarto capitolo viene presentato un questionario in versione studenti e versione docente, con l'obiettivo di rilevare il livello di informazione diffusa tra gli studenti e i docenti della scuola secondaria di secondo grado e l'importanza percepita di essere aggiornati sul tema. Nel quinto capitolo viene presentato un esempio di Unità di Apprendimento, con percorso individualizzato per studenti con DSA, sui polinomi e i prodotti notevoli in particolare.
Resumo:
La tesi riguarda l'equazione del calore sul gruppo classico SU(2), e la risoluzione di un problema di Cauchy associato all'equazione. Per trattare tale argomento viene introdotta la teoria delle rappresentazioni di gruppi di Lie compatti, che crea un collegamento fra il gruppo e gli automorfismi di uno spazio vettoriale. Concetti di base su questa teoria saranno di fondamentale importanza per l'elaborato, come ad esempio il Lemma di Schur e le relazioni di ortogonalità. Tale problema viene inoltre risolto grazie a teoremi dati dall'analisi armonica astratta, che riguardano trasformate di Fourier di funzioni definite su gruppi di Lie compatti. Esse agiscono sul duale di Pontryagin, l'insieme delle classi di equivalenza di rappresentazioni irriducibili, secondo la relazione di essere isomorfe. Sui gruppi di Lie compatti il duale di Pontryagin è discreto. SU(2) verrà rappresentato sugli spazi di polinomi omogenei complessi in due variabili. Nella tesi viene mostrato che le rappresentazioni di questo tipo costituiscono tutto il duale di Pontryagin di SU(2).
Resumo:
L'obiettivo di questa tesi è la caratterizzazione dei gruppi di Galois di alcune classi di polinomi separabili e risolubili per radicali. Questa classificazione si baserà sulle proprietà di primitività e imprimitività di tali gruppi, proprietà che descrivono il carattere della loro azione permutativa sulle radici dei polinomi. Da tale analisi potremo inoltre dedurre importanti informazioni sui polinomi, i quali, a loro volta, saranno detti primitivi o imprimitivi. Dopo aver ricordato alcune definizioni e risultati fondamentali di Teoria di Galois e Teoria dei gruppi, studieremo alcuni gruppi di permutazioni, concentrandoci in particolare sul gruppo lineare affine e sul prodotto intrecciato di due gruppi di permutazioni: tali oggetti costituiscono, infatti, gli strumenti principali per la descrizione dei gruppi di Galois che affronteremo negli ultimi capitoli. Nel Capitolo 3, in particolare, ci concentreremo su polinomi imprimitivi di grado p², con p primo. Nel quarto, invece, dimostreremo un potente Teorema che fornisce una notevole caratterizzazione dei gruppi di Galois di tutti i polinomi primitivi e risolubili per radicali.