998 resultados para plastic coatings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently developed cold-formed LiteSteel beam (LSB) sections have found increasing popularity in residential, industrial and commercial buildings due to their light weight and cost-effectiveness. Currently, there is significant interest in the use of LSB sections as flexural members in floor joist systems, although they can be used as flexural and compression members in a range of building systems. The plastic bending behaviour and section moment capacity of LSB sections with web holes can be assumed to differ from those without, but have yet to be investigated. Hence, no appropriate design rules for determining the section moment capacity of LSB sections with web holes are yet available. This paper presents the results of an investigation of the plastic bending behaviour and section moment capacity of LSB sections with circular web holes. LSB sections with varying circular hole diameters and degrees of spacing were considered. The paper also describes the simplified finite element (FE) modelling technique employed in this study, which incorporates all of the significant behavioural effects that influence the plastic bending behaviour and section moment capacity of these sections. The numerical and experimental test results and associated findings are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nitrile imine-mediated tetrazole-ene cycloaddition reaction (NITEC) is introduced as a powerful and versatile conjugation tool to covalently ligate macromolecules onto variable (bio)surfaces. The NITEC approach is initiated by UV irradiation and proceeds rapidly at ambient temperature yielding a highly fluorescent linkage. Initially, the formation of block copolymers by the NITEC methodology is studied to evidence its efficacy as a macromolecular conjugation tool. The grafting of polymers onto inorganic (silicon) and bioorganic (cellulose) surfaces is subsequently carried out employing the optimized reaction conditions obtained from the macromolecular ligation experiments and evidenced by surface characterization techniques, including X-ray photoelectron spectroscopy and FT-IR microscopy. In addition, the patterned immobilization of variable polymer chains onto profluorescent cellulose is achieved through a simple masking process during the irradiation. Photoinduced nitrile imine-alkene 1,3-dipolar cycloaddition (NITEC) is employed to covalently bind well-defined polymers onto silicon oxide or cellulose. A diaryl tetrazole-functionalized molecule is grafted via silanization or amidification, respectively. Under UV light, a reactive nitrile imine rapidly forms and reacts with maleimide-functionalized polymers yielding a fluorescent linkage. Via a masking method, polymeric fluorescent patterns are achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In herbaceous ecosystems worldwide, biodiversity has been negatively impacted by changed grazing regimes and nutrient enrichment. Altered disturbance regimes are thought to favour invasive species that have a high phenotypic plasticity, although most studies measure plasticity under controlled conditions in the greenhouse and then assume plasticity is an advantage in the field. Here, we compare trait plasticity between three co-occurring, C 4 perennial grass species, an invader Eragrostis curvula, and natives Eragrostis sororia and Aristida personata to grazing and fertilizer in a three-year field trial. We measured abundances and several leaf traits known to correlate with strategies used by plants to fix carbon and acquire resources, i.e. specific leaf area (SLA), leaf dry matter content (LDMC), leaf nutrient concentrations (N, C:N, P), assimilation rates (Amax) and photosynthetic nitrogen use efficiency (PNUE). In the control treatment (grazed only), trait values for SLA, leaf C:N ratios, Amax and PNUE differed significantly between the three grass species. When trait values were compared across treatments, E. curvula showed higher trait plasticity than the native grasses, and this correlated with an increase in abundance across all but the grazed/fertilized treatment. The native grasses showed little trait plasticity in response to the treatments. Aristida personata decreased significantly in the treatments where E. curvula increased, and E. sororia abundance increased possibly due to increased rainfall and not in response to treatments or invader abundance. Overall, we found that plasticity did not favour an increase in abundance of E. curvula under the grazed/fertilized treatment likely because leaf nutrient contents increased and subsequently its' palatability to consumers. E. curvula also displayed a higher resource use efficiency than the native grasses. These findings suggest resource conditions and disturbance regimes can be manipulated to disadvantage the success of even plastic exotic species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic deformation behavior of Cu/Ni/Wmetallicmultilayers with individual layer thickness ranging from 5 nm to 300 nm is investigated by nanoindentation testing. The experimental results reveal that the composite still exhibits indentation-induced plastic deformation instability and the loss of strain hardening ability at the nanometer scale even if the composite contains two kinds of layer interfaces (face centered cubic(FCC)/FCC and FCC/ body centered cubic) simultaneously. Plastic deformation behavior of the nanolayered material was evaluated and analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response to discussion on Gallage CPK, Chan D and Kodilara J (2012) Response of a plastic pipe buried in expansive clay. Proceedings of ICE, Geotechnical Engineering, Vol 164, February 2012, Issue GE1, pages 45-57.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous Abaqus [1] finite element analyses have been carried out using various plasticity models to investigate the effect of friction force on the rail head in relation to both the development of the accumulated plastic strain (PEEQ) and the changes in the depth of PEEQ distribution in the wheel-rail contact. The normal force distribution on the rail head was assumed to be Hertzian. The tangential force was implemented as a fraction of the normal force in the subroutine. Each analysis was carried out for a single pass and the effect of various friction coefficient values has been observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A refined plastic hinge method suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in a companion paper. The method implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the method for the analysis of steel frames comprising non-compact sections is established in this paper by comparison with a comprehensive range of analytical benchmark frame solutions. The refined plastic hinge method is shown to be more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin-walled steel plates subjected to in-plane compression develop two types of local plastic mechanism, namely the roof-shaped mechanism and the so-called flip-disc mechanism, but the intriguing question of why two mechanisms should develop was not answered until recently. It was considered that the location of first yield point shifted from the centre of the plate to the midpoint of the longitudinal edge depending on the b/t ratio, imperfection level, and yield stress of steel, which then decided the type of mechanism. This paper has verified this hypothesis using analysis and laboratory experiments. An elastic analysis using Galerkin's method to solve Marguerre's equations was first used to determine the first yield point, based on which the local plastic mechanism/imperfection tolerance tables have been developed which give the type of mechanism as a function of b/t ratio, imperfection level and yield stress of steel. Laboratory experiments of thin-walled columns verified the imperfection tolerance tables and thus indirectly the hypothesis. Elastic and rigid-plastic curves were them used to predict the effect on the ultimate load due to the change of mechanism. A finite element analysis of selected cases also confirmed the results from simple analyses and experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandwich panels comprising steel facings and a polystyrene foam core are increasingly used as roof and wall claddings in buildings in Australia. When they are subjected to loads causing bending and/or axial compression, the steel plate elements of their profiled facing are susceptible to local buckling. However, when compared to panels with no foam core, they demonstrate significantly improved local buckling behaviour because they are supported by foam. In order to quantify such improvements and to validate the use of available design buckling stress formulae, an investigation using finite element analyses and laboratory experiments was carried out on steel plates that are commonly used in Australia of varying yield stress and thickness supported by a polystyrene foam core. This paper presents the details of this investigation, the buckling results and their comparison with available design buckling formulae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of `advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A concentrated plasticity method suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in this paper. The pseudo plastic zone method implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the method for the analysis of steel frames comprising non-compact sections is established by comparison with a comprehensive range of analytical benchmark frame solutions. The pseudo plastic zone method is shown to be more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite steel-concrete structures experience non-linear effects which arise from both instability-related geometric non-linearity and from material non-linearity in all of their component members. Because of this, conventional design procedures cannot capture the true behaviour of a composite frame throughout its full loading range, and so a procedure to account for those non-linearities is much needed. This paper therefore presents a numerical procedure capable of addressing geometric and material non-linearities at the strength limit state based on the refined plastic hinge method. Different material non-linearity for different composite structural components such as T-beams, concrete-filled tubular (CFT) and steel-encased reinforced concrete (SRC) sections can be treated using a routine numerical procedure for their section properties in this plastic hinge approach. Simple and conservative initial and full yield surfaces for general composite sections are proposed in this paper. The refined plastic hinge approach models springs at the ends of the element which are activated when the surface defining the interaction of bending and axial force at first yield is reached; a transition from the first yield interaction surface to the fully plastic interaction surface is postulated based on a proposed refined spring stiffness, which formulates the load-displacement relation for material non-linearity under the interaction of bending and axial actions. This produces a benign method for a beam-column composite element under general loading cases. Another main feature of this paper is that, for members containing a point of contraflexure, its location is determined with a simple application of the method herein and a node is then located at this position to reproduce the real flexural behaviour and associated material non-linearity of the member. Recourse is made to an updated Lagrangian formulation to consider geometric non-linear behaviour and to develop a non-linear solution strategy. The formulation with the refined plastic hinge approach is efficacious and robust, and so a full frame analysis incorporating geometric and material non-linearity is tractable. By way of contrast, the plastic zone approach possesses the drawback of strain-based procedures which rely on determining plastic zones within a cross-section and which require lengthwise integration. Following development of the theory, its application is illustrated with a number of varied examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.