980 resultados para planting dates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"It’s late in the night. And after a long day at work, you have a splitting headache. You rattle around in the bottom drawer of the bathroom vanity to find a packet of paracetamol tablets you know are hiding there. Phew, relief is at hand! Then you turn the packet over and discover that the crumpled box of pills actually expired two years ago..."--http://theconversation.com/explainer-do-we-need-to-follow-medication-use-by-dates-4329

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teaching Resource prepared for DLB320 Landscape Horticulture (2015) This Planting Design Sourcebook is the essential guide to developing phytophilic design sensibilities, as well as constructing design processes suitable for various situations, and deciding how best to manipulate plants for effective uses for humankind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

'Goldfinger', a tetraploid banana produced from the Fundación Hondureña de Investigación Agrícola (FHIA) breeding program, was released to the Australian industry in 1995. It was promoted as an apple-flavoured dessert banana with resistance to Fusarium wilt race 1 and subtropical race 4, as well as resistance to black and yellow Sigatoka (Mycosphaerella fijiensis and M. musicola, respectively). This study was initiated to provide agronomic information to the banana industry, which was under threat from Fusarium wilt, on a new cultivar which could replace 'Williams' (AAA, Cavendish subgroup) or 'Lady Finger' (AAB, Pome subgroup) in those areas affected by Fusarium wilt. Also few studies had reported on the production characteristics of the new tetraploid hybrids, especially from subtropical areas, and therefore two field sites, one a steep-land farm and the other a level, more productive site, were selected for planting density and spatial arrangement treatments. The optimum density in terms of commercial production, taking into account bunch weight, finger size, length of the production cycle, plant height and ease of management, was 1680 plants/ha on the steep-land site where plants were planted in single rows with 2.5 m × 2.5 m spacings. However on the level site a double-row triangular layout with inter-row distances of 4.5 m to allow vehicular access (1724 plants/ha) gave the best results. With this arrangement plants were in an alternate, triangular arrangement along a row and a spacing of 1.5 m between plants at the points of each triangle and between each block of triangles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant tissue culture has been used for a number of years to produce micropropagated strawberry plants for planting into runner growing beds in the Stanthorpe (Queensland) and Bothwell (Tasmania) regions. This process has allowed the rapid release of new cultivars from the LAWS (Late Autumn, Winter, Spring) breeding program into the current runner production system. Micro-propagation in vitro allows plants to be produced during the autumn and winter months, when mother plants would normally be in a fruit production phase in the field in Queensland. The plants produced are of a high health status when they are planted. The subsequent arrival and build up of various diseases in the runner fields are closely monitored. Using tissue culture for the first generation reduces the time the plants spend in the field by twelve months, reducing disease incidence. To date, any disease outbreak has been successfully managed using early detection and rapid response methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been reported that high-density planting of sugarcane can improve cane and sugar yield through promoting rapid canopy closure and increasing radiation interception earlier in crop growth. It is widely known that the control of adverse soil biota through fumigation (removes soil biological constraints and improves soil health) can improve cane and sugar yield. Whether the responses to high-density planting and improved soil health are additive or interactive has important implications for the sugarcane production system. Field experiments established at Bundaberg and Mackay, Queensland, Australia, involved all combinations of 2-row spacings (0.5 and 1.5 m), two planting densities (27 000 and 81 000 two-eyed setts/ha), and two soil fumigation treatments (fumigated and non-fumigated). The Bundaberg experiment had two cultivars (Q124, Q155), was fully irrigated, and harvested 15 months after planting. The Mackay experiment had one cultivar (Q117), was grown under rainfed conditions, and harvested 10 months after planting. High-density planting (81 000 setts/ha in 0.5-m rows) did not produce any more cane or sugar yield at harvest than low-density planting (27 000 setts/ha in 1.5-m rows) regardless of location, crop duration (15 v. 10 months), water supply (irrigated v. rainfed), or soil health (fumigated v. non-fumigated). Conversely, soil fumigation generally increased cane and sugar yields regardless of site, row spacing, and planting density. In the Bundaberg experiment there was a large fumigation x cultivar x density interaction (P<0.01). Cultivar Q155 responded positively to higher planting density in non-fumigated soil but not in fumigated soil, while Q124 showed a negative response to higher planting density in non-fumigated soil but no response in fumigated soil. In the Mackay experiment, Q117 showed a non-significant trend of increasing yield in response to increasing planting density in non-fumigated soil, similar to the Q155 response in non-fumigated soil at Bundaberg. The similarity in yield across the range of row spacings and planting densities within experiments was largely due to compensation between stalk number and stalk weight, particularly when fumigation was used to address soil health. Further, the different cultivars (Q124 and Q155 at Bundaberg and Q117 at Mackay) exhibited differing physiological responses to the fumigation, row spacing, and planting density treatments. These included the rate of tiller initiation and subsequent loss, changes in stalk weight, and propensity to lodging. These responses suggest that there may be potential for selecting cultivars suited to different planting configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The promotion of controlled traffic (matching wheel and row spacing) in the Australian sugar industry is necessitating a widening of row spacing beyond the standard 1.5 m. As all cultivars grown in the Australian industry have been selected under the standard row spacing there are concerns that at least some cultivars may not be suitable for wider rows. To address this issue, experiments were established in northern and southern Queensland in which cultivars, with different growth characteristics, recommended for each region, were grown under a range of different row configurations. In the northern Queensland experiment at Gordonvale, cultivars Q187((sic)), Q200((sic)), Q201((sic)), and Q218((sic)) were grown in 1.5-m single rows, 1.8-m single rows, 1.8-m dual rows (50 cm between duals), and 2.3-m dual rows (80 cm between duals). In the southern Queensland experiment at Farnsfield, cvv. Q138, Q205((sic)), Q222((sic)) and Q188((sic)) were also grown in 1.5-m single rows, 1.8-m single rows, 1.8-m dual rows (50 cm between duals), while 1.8-m-wide throat planted single row and 2.0-m dual row (80 cm between duals) configurations were also included. There was no difference in yield between the different row configurations at Farnsfield but there was a significant row configuration x cultivar interaction at Gordonvale due to good yields in 1.8-m single and dual rows with Q201((sic)) and poor yields with Q200((sic)) at the same row spacings. There was no significant difference between the two cultivars in 1.5-m single and 2.3-m dual rows. The experiments once again demonstrated the compensatory capacity that exists in sugarcane to manipulate stalk number and individual stalk weight as a means of producing similar yields across a range of row configurations and planting densities. There was evidence of different growth patterns between cultivars in response to different row configurations (viz. propensity to tiller, susceptibility to lodging, ability to compensate between stalk number and stalk weight), suggesting that there may be genetic differences in response to row configuration. It is argued that there is a need to evaluate potential cultivars under a wider range of row configurations than the standard 1.5-m single rows. Cultivars that perform well in row configurations ranging from 1.8 to 2.0 m are essential if the adverse effects of soil compaction are to be managed through the adoption of controlled traffic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlled traffic (matching wheel and row spacing) is being promoted as a means to manage soil compaction in the Australian sugar industry. However, machinery limitations dictate that wider row spacings than the standard 1.5-m single row will need to be adopted to incorporate controlled traffic and many growers are reluctant to widen row spacing for fear of yield penalties. To address these concerns, contrasting row configuration and planting density combinations were investigated for their effect on cane and sugar yield in large-scale experiments in the Gordonvale, Tully, Ingham, Mackay, and Bingera (near Bundaberg) sugarcane-growing regions of Queensland, Australia. The results showed that sugarcane possesses a capacity to compensate for different row configurations and planting densities through variation in stalk number and individual stalk weight. Row configurations ranging from 1.5-m single rows (the current industry standard) to 1.8-m dual rows (50 cm between duals), 2.1-m dual (80 cm between duals) and triple ( 65 cm between triples) rows, and 2.3-m triple rows (65 cm between triples) produced similar yields. Four rows (50 cm apart) on a 2.1-m configuration (quad rows) produced lower yields largely due to crop lodging, while a 1.8-m single row configuration produced lower yields in the plant crop, probably due to inadequate resource availability (water stress/limited radiation interception). The results suggest that controlled traffic can be adopted in the Australian sugar industry by changing from a 1.5-m single row to 1.8-m dual row configuration without yield penalty. Further, the similar yields obtained with wider row configurations (2 m or greater with multiple rows) in these experiments emphasise the physiological and environmental plasticity that exists in sugarcane. Controlled traffic can be implemented with these wider row configurations (>2 m), although it will be necessary to carry out expensive modifications to the current harvester and haul-out equipment. There were indications from this research that not all cultivars were suited to configurations involving multiple rows. The results suggest that consideration be given to assessing clones with different growth habits under a range of row configurations to find the most suitable plant types for controlled traffic cropping systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micropropagation is unequalled for the rapid clonal propagation of improved cultivars from several Australian breeding programmes. This has been particularly true of the pineapple breeding programme, but it has also found an important role in the strawberry breeding programme where high-health mother stock is of paramount concern. In the banana and ginger industries, while access to new cultivars has been of importance, micropropagation has been adopted by the industry to ensure that planting materials are free from serious pests and diseases. Bananas can be used as planting material as early as the first generation ex vitro and is responsible for the establishment of laboratories and nurseries specializing in the production of pathogen-tested plants. The ginger industry, on the other hand, has used micropropagated plants as a source of disease and pest-free stock to establish a clean 'seed' scheme based on the production of conventional planting material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to initiate and manipulate flowering with KClO3 allows flowering of longan, to be triggered outside of the normal flowering season (July-September) in Australia. Fruit maturity following normal flowering will occur approximately six-eight months (180-220 days) from flowering, depending on variety. Out of season flowering will result in differing times to maturity due to different temperature regimes during the maturity period. Knowing how long fruit will take to mature from different KClO3 application dates is potentially a valuable tool for growers to use as it would allow them to time their applications with market opportunities, e.g. Chinese New Year, periods of low volumes or periods of high prices. A simple heat-sum calculation was shown to reliably quantify fruit maturity periods, 2902 and 3432 growing degree days for Kohala and Biew Kiew respectively. Growers can use heat-sum as a predictive tool to allow for efficient planning of harvesting, packaging and freight requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this small research activity (SRA) is to provide a foundation for establishing a national 'clean seed system' for sweetpotato in Papua New Guinea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of time of planting and plant size on the performance of ‘Festival’ and ‘Florida Fortuna’ strawberry (Fragaria ×ananassa) plants was studied at Nambour in southeastern Queensland, Australia, over 2 years. The main objective of the work was to determine whether small plants yielded proportionally less than large plants as planting was delayed. First, bare-rooted transplants of ‘Festival’ were divided into small (crown diameters ranging from 6 to 10 mm) or large plants (10 to 17 mm) and planted in late March, mid-April, or late April. Second, transplants of ‘Florida Fortuna’ were divided into small (5 to 8 mm) or large plants (8 to 17 mm) and planted in early April, mid-April, or early May. The early planting for each cultivar corresponded with the time that the transplants are first available from commercial strawberry nurseries. Yields were generally greater in plants planted in late March/early April compared with plants planted later. Differences in yield between the small and large plants were consistent across the different times of planting, with the small plants always having lower yields. Small transplants are an issue for the productivity of strawberry fields in this environment whether they are planted early or late. Producers should consider paying a premium for large transplants delivered early in the season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha−1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha−1) was generally lower than TP (8.58 t ha−1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS.