985 resultados para planetary albedo
Resumo:
Planetary atmospheres exist in a seemingly endless variety of physical and chemical environments. There are an equally diverse number of methods by which we can study and characterize atmospheric composition. In order to better understand the fundamental chemistry and physical processes underlying all planetary atmospheres, my research of the past four years has focused on two distinct topics. First, I focused on the data analysis and spectral retrieval of observations obtained by the Ultraviolet Imaging Spectrograph (UVIS) instrument onboard the Cassini spacecraft while in orbit around Saturn. These observations consisted of stellar occultation measurements of Titan's upper atmosphere, probing the chemical composition in the region 300 to 1500 km above Titan's surface. I examined the relative abundances of Titan's two most prevalent chemical species, nitrogen and methane. I also focused on the aerosols that are formed through chemistry involving these two major species, and determined the vertical profiles of aerosol particles as a function of time and latitude. Moving beyond our own solar system, my second topic of investigation involved analysis of infra-red light curves from the Spitzer space telescope, obtained as it measured the light from stars hosting planets of their own. I focused on both transit and eclipse modeling during Spitzer data reduction and analysis. In my initial work, I utilized the data to search for transits of planets a few Earth masses in size. In more recent research, I analyzed secondary eclipses of three exoplanets and constrained the range of possible temperatures and compositions of their atmospheres.
Resumo:
This thesis is a comprised of three different projects within the topic of tropical atmospheric dynamics. First, I analyze observations of thermal radiation from Saturn’s atmosphere and from them, determine the latitudinal distribution of ammonia vapor near the 1.5-bar pressure level. The most prominent feature of the observations is the high brightness temperature of Saturn’s subtropical latitudes on either side of the equator. After comparing the observations to a microwave radiative transfer model, I find that these subtropical bands require very low ammonia relative humidity below the ammonia cloud layer in order to achieve the high brightness temperatures observed. We suggest that these bright subtropical bands represent dry zones created by a meridionally overturning circulation.
Second, I use a dry atmospheric general circulation model to study equatorial superrotation in terrestrial atmospheres. A wide range of atmospheres are simulated by varying three parameters: the pole-equator radiative equilibrium temperature contrast, the convective lapse rate, and the planetary rotation rate. A scaling theory is developed that establishes conditions under which superrotation occurs in terrestrial atmospheres. The scaling arguments show that superrotation is favored when the off-equatorial baroclinicity and planetary rotation rates are low. Similarly, superrotation is favored when the convective heating strengthens, which may account for the superrotation seen in extreme global-warming simulations.
Third, I use a moist slab-ocean general circulation model to study the impact of a zonally-symmetric continent on the distribution of monsoonal precipitation. I show that adding a hemispheric asymmetry in surface heat capacity is sufficient to cause symmetry breaking in both the spatial and temporal distribution of precipitation. This spatial symmetry breaking can be understood from a large-scale energetic perspective, while the temporal symmetry breaking requires consideration of the dynamical response to the heat capacity asymmetry and the seasonal cycle of insolation. Interestingly, the idealized monsoonal precipitation bears resemblance to precipitation in the Indian monsoon sector, suggesting that this work may provide insight into the causes of the temporally asymmetric distribution of precipitation over southeast Asia.
Resumo:
Como eventos de fissão induzida por nêutrons não ocorrem nas regiões nãomultiplicativas de reatores nucleares, e.g., moderador, refletor, e meios estruturais, essas regiões não geram potência e a eficiência computacional dos cálculos globais de reatores nucleares pode portanto ser aumentada eliminando os cálculos numéricos explícitos no interior das regiões não-multiplicativas em torno do núcleo ativo. É discutida nesta dissertação a eficiência computacional de condições de contorno aproximadas tipo albedo na formulação de ordenadas discretas (SN) para problemas de autovalor a dois grupos de energia em geometria bidimensional cartesiana. Albedo, palavra de origem latina para alvura, foi originalmente definido como a fração da luz incidente que é refletida difusamente por uma superfície. Esta palavra latina permaneceu como o termo científico usual em astronomia e nesta dissertação este conceito é estendido para reflexão de nêutrons. Este albedo SN nãoconvencional substitui aproximadamente a região refletora em torno do núcleo ativo do reator, pois os termos de fuga transversal são desprezados no interior do refletor. Se o problema, em particular, não possui termos de fuga transversal, i.e., trata-se de um problema unidimensional, então as condições de contorno albedo, como propostas nesta dissertação, são exatas. Por eficiência computacional entende-se analisar a precisão dos resultados numéricos em comparação com o tempo de execução computacional de cada simulação de um dado problema-modelo. Resultados numéricos para dois problemas-modelo com de simetria são considerados para ilustrar esta análise de eficiência.
Resumo:
Os eventos de fissão nuclear, resultados da interação dos nêutrons com os núcleos dos átomos do meio hospedeiro multiplicativo, não estão presentes em algumas regiões dos reatores nucleares, e.g., moderador, refletor, e meios estruturais. Nesses domínios espaciais não há geração de potência nuclear térmica e, além disso, comprometem a eficiência computacional dos cálculos globais de reatores nucleares. Propomos nesta tese uma estratégia visando a aumentar a eficiência computacional dessas simulações eliminando os cálculos numéricos explícitos no interior das regiões não-multiplicativas (baffle e refletor) em torno do núcleo ativo. Apresentamos algumas modelagens e discutimos a eficiência da aplicação dessas condições de contorno aproximadas tipo albedo para uma e duas regiões nãomultiplicativas, na formulação de ordenadas discretas (SN) para problemas de autovalor a dois grupos de energia em geometria bidimensional cartesiana. A denominação Albedo, palavra de origem latina para alvura, foi originalmente definida como a fração da luz incidente que é refletida difusamente por uma superfície. Esta denominação latina permaneceu como o termo científico usual em astronomia e, nesta tese, este conceito é estendido para reflexão de nêutrons. Estas condições de contorno tipo albedo SN não-convencional substituem aproximadamente as regiões de baffle e refletor no em torno do núcleo ativo do reator, desprezando os termos de fuga transversal no interior dessas regiões. Se o problema, em particular, não possui termos de fuga transversal, i.e., trata-se de um problema unidimensional, então as condições de contorno albedo, como propostas nesta tese, são exatas. Por eficiência computacional entende-se a análise da precisão dos resultados numéricos em comparação com o tempo de execução computacional de cada simulação de um dado problema-modelo. Resultados numéricos considerando dois problemas-modelo com de simetria são considerados para ilustrar esta análise de eficiência.
Resumo:
In a wind-turbine gearbox, planet bearings exhibit a high failure rate and are considered as one of the most critical components. Development of efficient vibration based fault detection methods for these bearings requires a thorough understanding of their vibration signature. Much work has been done to study the vibration properties of healthy planetary gear sets and to identify fault frequencies in fixed-axis bearings. However, vibration characteristics of planetary gear sets containing localized planet bearing defects (spalls or pits) have not been studied so far. In this paper, we propose a novel analytical model of a planetary gear set with ring gear flexibility and localized bearing defects as two key features. The model is used to simulate the vibration response of a planetary system in the presence of a defective planet bearing with faults on inner or outer raceway. The characteristic fault signature of a planetary bearing defect is determined and sources of modulation sidebands are identified. The findings from this work will be useful to improve existing sensor placement strategies and to develop more sophisticated fault detection algorithms. Copyright © 2011 by ASME.
Resumo:
We propose new scaling laws for the properties of planetary dynamos. In particular, the Rossby number, the magnetic Reynolds number, the ratio of magnetic to kinetic energy, the Ohmic dissipation timescale and the characteristic aspect ratio of the columnar convection cells are all predicted to be power-law functions of two observable quantities: the magnetic dipole moment and the planetary rotation rate. The resulting scaling laws constitute a somewhat modified version of the scalings proposed by Christensen and Aubert. The main difference is that, in view of the small value of the Rossby number in planetary cores, we insist that the non-linear inertial term, uu, is negligible. This changes the exponents in the power-laws which relate the various properties of the fluid dynamo to the planetary dipole moment and rotation rate. Our scaling laws are consistent with the available numerical evidence. © The Authors 2013 Published by Oxford University Press on behalf of The Royal Astronomical Society.
Resumo:
Intense heavy ion beams offer a unique tool for generating samples of high energy density matter with extreme conditions of density and pressure that are believed to exist in the interiors of giant planets. An international accelerator facility named FAIR (Facility for Antiprotons and Ion Research) is being constructed at Darmstadt, which will be completed around the year 2015. It is expected that this accelerator facility will deliver a bunched uranium beam with an intensity of 5x10(11) ions per spill with a bunch length of 50-100 ns. An experiment named LAPLAS (Laboratory Planetary Sciences) has been proposed to achieve a low-entropy compression of a sample material like hydrogen or water (which are believed to be abundant in giant planets) that is imploded in a multi-layered target by the ion beam. Detailed numerical simulations have shown that using parameters of the heavy ion beam that will be available at FAIR, one can generate physical conditions that have been predicted to exist in the interior of giant planets. In the present paper, we report simulations of compression of water that show that one can generate a plasma phase as well as a superionic phase of water in the LAPLAS experiments.
Resumo:
Relatives to Planetary Nebulae, such as barium stars or symbiotic systems, can shed light on the connection between Planetary Nebulae and binarity. Because of the observational selection effects against direct spectroscopic detection of binary PNe cores with orbital periods longer than a few dozen days, at present these "awkward relatives" are a critical source of our knowledge about the binary PNe population at longer periods. Below a few examples are discussed, posing constraints on the attempts to model nebula, ejection process in a binary. © 2006 International Astronomical Union.
Resumo:
R band CCD photometric observations of short period Jupiter family comets in the heliocentric region of 2.11 AU less than or equal to R-h less than or equal to 5.63 AU were performed using the 4.2 m William Herschel Telescope on La Palma in December 1998. 22 comets were targeted, including the comet- asteroid transition object 49P/Arend-Rigaux. Out of a total of ten detected comets. six were seen to display substantial outgassing (48P, 65P, 74P, 103Pt 128P, and 139P), with the remaining four comets (7P. 9P, 22P. and 49P) being stellar in appearance. Nuclear radius measurements and relative dust production rates in terms of Af rho were measured for these comets, along with upper limits for the remaining twelve undetected comets (6P, 44P, 51P, 54P, 57P: 63P, 71P, 73P, 79P, 86P, 87P, and 100P). The inactive comets had nuclear radii in the range 1.8 km less than or equal to r(N) less than or equal to 4.4 km, while upper limits for the active and undetected comets (assuming they all lay within the held of view) were between 0.6 km and 12.7 km, for an assumed albedo of 0.04. Even if one applies the previously measured maximum axis ratio of 2.6:1 and the minimum measured albedo of 0.02 to the undetected comets. their projected semi-major axes are all constrained to below 8 km. For the active comets, photometric profiles of their dust comae were measured and are consistent with those of steady state coma models.
Resumo:
We present the first detailed kinematical analysis of the planetary nebula Abell 63, which is known to contain the eclipsing close-binary nucleus UU Sge. Abell 63 provides an important test case in investigating the role of close-binary central stars on the evolution of planetary nebulae. Longslit observations were obtained using the Manchester echelle spectrometer combined with the 2.1-m San Pedro Martir Telescope. The spectra reveal that the central bright rim of Abell 63 has a tube-like structure. A deep image shows collimated lobes extending from the nebula, which are shown to be high-velocity outflows. The kinematic ages of the nebular rim and the extended lobes are calculated to be 8400 +/- 500 and 12900 +/- 2800 yr, respectively, which suggests that the lobes were formed at an earlier stage than the nebular rim. This is consistent with expectations that disc-generated jets form immediately after the common envelope phase. A morphological-kinematical model of the central nebula is presented and the best-fitting model is found to have the same inclination as the orbital plane of the central binary system; this is the first proof that a close-binary system directly affects the shaping of its nebula. A Hubble-type flow is well-established in the morphological-kinematical modelling of the observed line profiles and imagery. Two possible formation models for the elongated lobes of Abell 63 are considered, (i) a low-density, pressure-driven jet excavates a cavity in the remnant asymptotic giant branch (AGB) envelope; (ii) high-density bullets form the lobes in a single ballistic ejection event.
Resumo:
Jupiter Family comets (JFCs) are short period comets which have recently entered the inner solar system, having previously orbited in the Kuiper Belt since the formation of the planets. We used two nights on the 3.6 m New Technology Telescope (NTT) at the European Southern Observatory, to obtain VRI photometry of three JFCs; 7P/Pons-Winnecke, 14P/Wolf and 92P/Sanguin. These were observed to be stellar in appearance. We find mean effective radii of 2.24 ± 0.02 km for 7P, 3.16 ± 0.01 km for 14P and 2.08 ± 0.01 km for 92P, assuming a geometric albedo of 0.04. From light-curves for each comet we find rotation periods of 7.53 ± 0.10 and 6.22 ± 0.05 h for 14P and 92P respectively. 7P exhibits brightness variations which imply a rotation period of 6.8 = Prot = 9.5 h. Assuming the nuclei to be ellipsoidal the measured brightness variations imply minimum axial ratios a/b of 1.3 ± 0.1 for 7P and 1.7 ± 0.1 for both 14P and 92P. This in turn implies minimum densities of 0.23 ± 0.08 g cm-3 for 7P, 0.32 ± 0.02 g cm-3 for 14P and 0.49 ± 0.06 g cm-3 for 92P. Finally, we measure colour indices of (V-R) = 0.40 ± 0.05 and (R-I) = 0.41 ± 0.06 for 7P/Pons-Winnecke, (V-R) = 0.57 ± 0.07 and (R-I) = 0.51 ± 0.06 for 14P/Wolf, and (V-R) = 0.54 ± 0.04 and (R-I) = 0.54 ± 0.04 for 92P/Sanguin.
Resumo:
We present results from broad-band V- and R-filter observations obtained at the 4.2-m William Herschel Telescope on La Palma on 2002 July 12-14. A total of six comets were imaged, and their heliocentric distances ranged from 2.8 to 6.1 au. The comets observed were 43P/Wolf-Harrington, 129P/Shoemaker-Levy 3, 133P/Elst-Pizarro, 143P/Kowal-Mrkos, P/1998 U4 (Spahr) and P/2001 H5 (NEAT). A detailed surface brightness profile analysis indicates that three of the targeted comets (43P/Wolf-Harrington, 129P/Shoemaker-Levy 3 and P/1998 U4) were visibly active, and the remaining three comets were stellar in appearance. Further analysis shows that for the three `stellar-like' comets the possible coma contribution to the observed flux does not exceed 12.2 per cent, and in the case of comet 143P/Kowal-Mrkos the coma contribution is expected to be as low as 1 per cent, and so the resulting photometry most likely represents that of the projected nucleus surface. Effective radii for the inactive comets range from 1.02 to 4.56 km, and the effective radius upper limits for the active comets range from 1.94 to 4.15 km. We assume an albedo and phase coefficient of 0.04 and 0.035 mag deg-1, respectively, with the exception of comets 133P/Elst-Pizarro and 143P/Kowal-Mrkos for which phase coefficients were previously measured. These values are compared with previous measurements, and for comet 43P/Wolf-Harrington we find that the nucleus axial ratio a/b could be as large as 2.44. For the active comets we measured dust production levels in terms of the Af? quantity. Spectral gradients were extracted for two of the inactive comets from their measured broad-band colour indices, and compared with the rest of the comet population for which (V-R) colour and spectral gradient values exist. We find a spectral gradient for 143P/Kowal-Mrkos of 9.9 +/- 8.1 per cent/100 nm, which is very typical of Jupiter-family comets, the majority of which have reflectivity gradients in the range 0-13 per cent (100 nm)-1. The spectral gradient for comet 133P/Elst-Pizarro is amongst the bluest yet measured. We measure a (V-R) colour index value of 0.14 +/- 0.11 for the nucleus of 133P/Elst-Pizarro which is considerably lower than previous measurements. A possible explanation for this difference is considered.