968 resultados para pirolisi, PFU, syngas, char, impianto pilota, pneumatici


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensitivity of combustion phasing and combustion descriptors to ignition timing, load and mixture quality on fuelling a multi-cylinder natural gas engine with bio-derived H-2 and CO rich syngas is addressed. While the descriptors for conventional fuels are well established and are in use for closed loop engine control, presence of H-2 in syngas potentially alters the mixture properties and hence combustion phasing, necessitating the current study. The ability of the descriptors to predict abnormal combustion, hitherto missing in the literature, is also addressed. Results from experiments using multi-cylinder engines and numerical studies using zero dimensional Wiebe function based simulation models are reported. For syngas with 20% H-2 and CO and 2% CH4 (producer gas), an ignition retard of 5 +/- 1 degrees was required compared to natural gas ignition timing to achieve peak load of 72.8 kWe. It is found that, for syngas, whose flammability limits are 0.42-1.93, the optimal engine operation was at an equivalence ratio of 1.12. The same methodology is extended to a two cylinder engine towards addressing the influence of syngas composition, especially H-2 fraction (varying from 13% to 37%), on the combustion phasing. The study confirms the utility of pressure trace derived combustion descriptors, except for the pressure trace first derivative, in describing the MBT operating condition of the engine when fuelled with an alternative fuel. Both experiments and analysis suggest most of the combustion descriptors to be independent of the engine load and mixture quality. A near linear relationship with ignition angle is observed. The general trend(s) of the combustion descriptors for syngas fuelled operation are similar to those of conventional fuels; the differences in sensitivity of the descriptors for syngas fuelled engine operation requires re-calibration of control logic for MBT conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study provides an extensive and detailed numerical analysis of NO chemical kinetics in low calorific value H-2/CO syngas flames utilizing predictions by five chemical kinetic mechanisms available out of which four deal with H-2/CO while the fifth mechanism (GRI 3.0) additionally accounts for hydrocarbon chemistry. Comparison of predicted axial NO profiles in premixed flat flames with measurements at 1 bar, 3.05 bar and 9.15 bar shows considerably large quantitative differences among the various mechanisms. However, at each pressure, the quantitative reaction path diagrams show similar NO formation pathways for most of the mechanisms. Interestingly, in counterflow diffusion flames, the quantitative reaction path diagrams and sensitivity analyses using the various mechanisms reveal major differences in the NO formation pathways and reaction rates of important reactions. The NNH and N2O intermediate pathways are found to be the major contributors for NO formation in all the reaction mechanisms except GRI 3.0 in syngas diffusion flames. The GRI 3.0 mechanism is observed to predict prompt NO pathway as the major contributing pathway to NO formation. This is attributed to prediction of a large concentration of CH radical by the GRI 3.0 as opposed to a relatively negligible value predicted by all other mechanisms. Also, the back-conversion of NNH into N2O at lower pressures (2-4 bar) was uniquely observed for one of the five mechanisms. The net reaction rates and peak flame temperatures are used to correlate and explain the differences observed in the peak NO] at different pressures. This study identifies key reactions needing assessment and also highlights the need for experimental data in syngas diffusion flames in order to assess and optimize H-2/CO and nitrogen chemistry. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen, either in pure form or as a gaseous fuel mixture specie enhances the fuel conversion efficiency and reduce emissions in an internal combustion engine. This is due to the reduction in combustion duration attributed to higher laminar flame speeds. Hydrogen is also expected to increase the engine convective heat flux, attributed (directly or indirectly) to parameters like higher adiabatic flame temperature, laminar flame speed, thermal conductivity and diffusivity and lower flame quenching distance. These factors (adversely) affect the thermo-kinematic response and offset some of the benefits. The current work addresses the influence of mixture hydrogen fraction in syngas on the engine energy balance and the thermo-kinematic response for close to stoichiometric operating conditions. Four different bio-derived syngas compositions with fuel calorific value varying from 3.14 MJ/kg to 7.55 MJ/kg and air fuel mixture hydrogen fraction varying from 7.1% to 14.2% by volume are used. The analysis comprises of (a) use of chemical kinetics simulation package CHEMKIN for quantifying the thermo-physical properties (b) 0-D model for engine in-cylinder analysis and (c) in-cylinder investigations on a two-cylinder engine in open loop cooling mode for quantifying the thermo-kinematic response and engine energy balance. With lower adiabatic flame temperature for Syngas, the in-cylinder heat transfer analysis suggests that temperature has little effect in terms of increasing the heat flux. For typical engine like conditions (700 K and 25 bar at CR of 10), the laminar flame speed for syngas exceeds that of methane (55.5 cm/s) beyond mixture hydrogen fraction of 11% and is attributed to the increase in H based radicals. This leads to a reduction in the effective Lewis number and laminar flame thickness, potentially inducing flame instability and cellularity. Use of a thermodynamic model to assess the isolated influence of thermal conductivity and diffusivity on heat flux suggests an increase in the peak heat flux between 2% and 15% for the lowest (0.420 MW/m(2)) and highest (0.480 MW/m(2)) hydrogen containing syngas over methane (0.415 MW/m(2)) fueled operation. Experimental investigations indicate the engine cooling load for syngas fueled engine is higher by about 7% and 12% as compared to methane fueled operation; the losses are seen to increase with increasing mixture hydrogen fraction. Increase in the gas to electricity efficiency is observed from 18% to 24% as the mixture hydrogen fraction increases from 7.1% to 9.5%. Further increase in mixture hydrogen fraction to 14.2% results in the reduction of efficiency to 23%; argued due to the changes in the initial and terminal stages of combustion. On doubling of mixture hydrogen fraction, the flame kernel development and fast burn phase duration decrease by about 7% and 10% respectively and the terminal combustion duration, corresponding to 90%-98% mass burn, increases by about 23%. This increase in combustion duration arises from the cooling of the near wall mixture in the boundary layer attributed to the presence of hydrogen. The enhancement in engine cooling load and subsequent reduction in the brake thermal efficiency with increasing hydrogen fraction is evident from the engine energy balance along with the cumulative heat release profiles. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a detailed experimental and numerical investigation of the effect of H-2/CO composition on extinction characteristics of premixed and nonpremixed syngas flames. Experimental measurements of local and global extinction strain rates in counterflow diffusion flames have been reported at atmospheric pressure for six different compositions of syngas fuel. The concentration of H-2 was varied from 5 to 20% with a 3% increment, and correspondingly, CO was decreased from 35 to 20% in steps of 3%. Particle imaging velocimetry has been used to determine the local extinction strain rates. Local extinction strain rates increased with an increase in the H-2/CO ratio in both nonpremixed and premixed flames. The predicted extinction strain rates for both nonpremixed and premixed counterflow flames using five different mechanisms available in the literature were compared with measurements. The Davis H-2/CO and Ranzi H-2/CO mechanisms predicted extinction strain rates within 10% of experimental values irrespective of the H-2/CO ratio. In the nonpremixed case, the Cl mechanism by Li et al., GRI 3.0, and the Ranzi H-2/CO mechanism predicted extinction strain rates well for low H-2/CO ratios (from 5:35 to 14:26) but deviated from experiments for higher H-2/CO values (17:23 and 20:20). In addition to kinetics, preferential diffusion effects were found to affect the reaction zone significantly and create distinct localized reaction zone structures in nonpremixed flames, which could contribute to discrepancies in extinction predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current work reports quantitative OH species concentration in the cavity of a trapped vortex combustor (TVC) in the context of mixing and flame stabilization studies using both syngas and methane fuels. Planar laser induced fluorescence (PLIF) measurements of OH radical obtained using a Nd: YAG pumped dye laser are quantified using a flat flame McKenna burner. The momentum flux ratio (MFR), defined as the ratio of the cavity fuel jet momentum to that of the guide vane air stream, is observed to be a key governing parameter. At high MFRs similar to 4.5, the flame front is observed to form at the interface of the fuel jet and the air jet stream. This is substantiated by velocity vector field measurements. For syngas, as the MFR is lowered to similar to 0.3, the fuel-air mixing increases and a flame front is formed at the bottom and downstream edge of the cavity where a stratified charge is present. This trend is observed for different velocities at similar equivalence ratios. In case of methane combustion in the cavity, where the MFRs employed are extremely low at similar to 0.01, a different mechanism is observed. A fuel-rich mixture is now observed at the center of the cavity and this mixture undergoes combustion. On further increase of the cavity equivalence ratio, the rich mixture exceeds the flammability limit and forms a thin reaction zone at the interface with air stream. As a consequence, a shear layer flame at the top of the cavity interface with the mainstream is also observed. The equivalence ratio in the cavity also determines the combustion characteristics in the case of fuel-air mixtures that are formed as a result of the mixing. Overall, flame stabilization mechanisms have been proposed, which account for the wide range of MFRs and premixing in the mainstream as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algebraic unified second-order moment (AUSM) turbulence-chemistry model of char combustion is introduced in this paper, to calculate the effect of particle temperature fluctuation on char combustion. The AUSM model is used to simulate gas-particle flows, in coal combustion in a pulverized coal combustor, together with a full two-fluid model for reacting gas-particle flows and coal combustion, including the sub-models as the k-epsilon-k(p) two-phase turbulence niodel, the EBU-Arrhenius volatile and CO combustion model, and the six-flux radiation model. A new method for calculating particle mass flow rate is also used in this model to correct particle outflow rate and mass flow rate for inside sections, which can obey the principle of mass conservation for the particle phase and can also speed up the iterating convergence of the computation procedure effectively. The simulation results indicate that, the AUSM char combustion model is more preferable to the old char combustion model, since the later totally eliminate the influence of particle temperature fluctuation on char combustion rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen: La figura del poeta-traductor encuentra en Raúl Gustavo Aguirre visos de complejidad altamente productivos para la teoría de la traducción. Principal difusor de la obra de René Char en la Argentina, Aguirre traduce y publica, desde el lugar del seguidor y discípulo, la obra de Char en los años cincuenta; con Char comparte, además, la devoción por Arthur Rimbaud, que el autor de Fureur et mystère considera intocable, “fenómeno cuya única razón es ser” (Char 1955). La hipótesis del artículo es que Aguirre construye, en base a su tarea como traductor de Illuminations y de Une Saison en enfer, su propia legitimidad como poeta, al intervenir sobre ese supuesto núcleo intocable que es, para Char, la poesía de Rimbaud.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]The present doctoral thesis centers on studying pyrolysis as a chemical recycling technique for rejected packaging waste fractions coming from separation and sorting plants. The pyrolysis experiments have been carried out in a lab-scale installation equipped with a 3.5 L semi-batch reactor and a condensation and collection system for the liquids and gases generated. In the present thesis, an experimental study on the conventional pyrolysis process applied to the aforementioned waste fractions has been conducted, as well as the study of non-conventional or advanced pyrolysis processes such as catalytic and stepwise pyrolysis. The study of the operating parameters has been carried out using a mixed plastics simulated sample, the composition of which is similar to that found in real fractions, and subsequently the optimized process has been applied to real packaging waste. An exhaustive characterization of the solids, liquids and gases obtained in the process has been made after each experiment and their potential uses have been established. Finally, an empirical model that will predict the pyrolysis yields (% organic liquid, % aqueous liquid, % gases, % char, % inorganic solid) as a function of the composition of the initial sample has been developed. As a result of the experimental work done, the requirements have been established for an industrial packaging waste pyrolysis plant that aims to be sufficiently versatile as to generate useful products regardless of the nature of the raw material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bilboko La Pe??a auzoko pilotalekuaren erabilerarako pilota eskola proiektua

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Material plastikoen kontsumoak izugarri gora egin du azken mendean. Hori dela eta, material hauek erabiltzearen ondorioz sortutako hondakinak asko handitu dira. Europar Batasuneko herrialdeetan 250 milioi tona baino gehiago hiri - hondaki n solido ( RSU ) sortzen dira urtero, urteko %3ko hazkunt zarekin. K antitate honen %7a plastiko hondakinei dagokie, hots, 17.5 milioi tona. Itsasoko uretan ere aurki daitezke plastikoak, urtero sei milioi tona eta erdi botatzen baitira itsasora, mediterraneo itsasoa izanik munduko plastiko biltegirik handiena. Itsasoan 90 urteraino iraun dezake te eta urte hauetan zehar distantzia handiak egin ditzakete aldatu gabe. Horregatik esaten da plastikoak iraunkorrak direla. Egun, hondakin plastikoen portzentaia txiki bat bakarrik birziklatzen da eta bai biltegiratzea bai erreketa bidezko eliminazioak ingurumen arazoak dituzte . Gainera, plastiko gehienak degradaezi nak dira, urte luzez ingurugiro kalteak eraginez . Hori dela eta, material hauen balorizaziorako teknologia berrien sustapena beharrezkoa da, eskala handian eraginkorrak, ekonomikoki bideragarriak eta ingurugiroa errespetatuko dutenak. Hondakin plastikoetatik abiatuz hidrogenoa lortzeko prozesua interesgarria eta bideragarria da, hidrogenoaren kontsumoaren igoe ra kontuan hartuz. Gaur egun erregai fosilen prozesaketatik lortzen da hidrogenoa, CO 2 - a ren emisio handiak sortzen direlarik. Emisio hauen murrizketa beharrezkotzat hartu da. Hau guztiagatik, Gradu Amaierako Lan honen helburu nagusia plastikoen balorizazio a ikertzea da, konkretuki hiri - hondakin solidoetan aurkitzen diren plast ikoena . Pirolisi eta ur baporearen bidezko erreformatua erabili dira hidrogenoa lortzeko, azken hau balio handiko produktua izanik. Horretarako lehenengo etapa iturri ohantze konikoan, 500 ºC - tan, buruturiko pirolisia izan da eta bigarrenik ohantze fluidizatu batean ur baporearen bidezko erreformatua burutu da , 700 ºC - tan . Helburu nagusi hau betetzeko bestelako helburu zehatzak ezarri dira, hiri - hondakin solidoetan aurkitzen diren HDPE, PP, PS eta PET plastiko nahaste baten bideragarritasuna aztertu delarik aurrez aipatutako bi etapen bidez:  Plastiko nahastearen pirolisian sorturiko konposatu hegazkorren erreformatua era jarraian burutzea.  Zero denboran e rreakzio indizeak (konbertsioa et a etekinak) eta lortutako gasaren konposizioa determinatze a .  Erreformatuan erabilitako katalizatzailearen desaktibatzeak erreakzioa ren konbertsio eta etekina n duen eragina aztertzea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[eus] Gaur egungo erregai fosilen eskasiak eta hauek sortzen dituzten berotegi efektuko gasen emisio altuek bultzatu egin behar gaituzte energia iturri berriztagarriak erabiltzera. Biomasa, potentzial handiko energia iturria da eta ezinbestekoa izan da gizakiaren bizitzaren garapenerako. Energia berriztagarrien artean biomasa potentzial handiko lehengaia izanda bere erabilerak duen berebiziko garrantzia azpimarratu da lan honetan. Lehengai honetatik energia lortzeko tratamendu termokimiko ezberdinetatik pirolisi oxidatiboan lan egitea erabaki da. Sarrerako gas emariaren oxigenoak pirolisiaren ondoren partikularen gainazalean geratu den ikatzaren errekuntza ematerakoan, biomasaren konbertsioa bere osotasunean ematea lortuko duelako. Baita instalazioak behar duen bezain beste beroa hornitu ahal izango duelako ere. Modu honetan, pirolisi oxidatiboa inertea baino interesgarriagoa bihurtu delarik industria mailan garrantzi handia lortu du.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fish production is considered in the barren chars or sandy land masses created through siltation along river banks and deltas in Bangladesh. The prospects for fish culture in ponds and cages or pen culture in rivers and canals are examined. The socioeconomic implications of fish culture as a livelihood source for communities living in char areas are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rich combustion of n-heptane, diesel oil, jet A-1 kerosene, and bio-diesel (rapeseed-oil methyl ester) were studied to produce hydrogen enriched gas, ready for the cleanup stages for fuel cell applications. n-heptane was successfully reformed up to an equivalence ratio of 3:1, reaching a conversion efficiency up to 83% for a packed bed of alumina bead burner. Diesel, kerosene and bio-diesel were reformed to synthesis gas with conversion efficiency up to 65%. At equivalence ratio of 2:1 and P=7 kw, stability, low HC formation, high conversion efficiency, and low soot emission were achieved. A common synthesis gas composition around this condition was 15 and 13% H2, 15 and 17% CO, and 4 and 4.5% CO2 for n-heptane and diesel, jet A-1 and bio-diesel, respectively, for burner A. This is an abstract of a paper presented at the 2010 Spring National Meeting (San Antonio, TX 3/21-25/2010).