983 resultados para phytochelatins synthase gene
Resumo:
Background and Objectives. A frequent mutation in the cystathionine beta-synthase (CBS) gene (844ins68, a 68-bp insertion in the coding region of exon 8) was recently discovered. In the present study we Investigated this mutation as a candidate risk factor for venous thrombosis.Design and Methods. The prevalence of the 844ins68 CBS mutation was determined in 101 patients with objectively diagnosed deep venous thrombosis and in 101 healthy controls matched for age, sex and race. PCR amplification of a DNA fragment containing exon 8 of the CBS gene was employed to determine the genotypes, Additionally, Bsrl restriction enzyme digestion of the PCR products was performed in all samples from carriers of the insertion, to test for concurrent presence of a second mutation (T833C) in the CBS gene.Results. The insertion was found in 21 out of 101 patients (20.8%; allele frequency 0.109) and in 20 out of 101 controls (19.8%; allele frequency 0.114), yielding a relative risk for venous thrombosis related to the 844ins68 CBS mutation close to 1.0. In addition, the T833C GBS mutation was detected in all alleles carrying the 844ins68 CBS insertion, confirming the co-inheritance of the two mutations.Interpretation and Conclusions. Our findings do not support the hypothesis that the 844ins68 mutation in the CBS gene is a genetic risk factor for venous thrombosis. (C)1998, Ferrata Storti Foundation.
Resumo:
Background and Objectives. A frequent mutation in the cystathionine β- synthase (CBS) gene (844ins68, a 68-bp insertion in the coding region of exon 8) was recently discovered. In the present study we investigated this mutation as a candidate risk factor for venous thrombosis. Design and Methods. The prevalence of the 844ins68 CBS mutation was determined in 101 patients with objectively diagnosed deep venous thrombosis and in 101 healthy controls matched for age, sex and race. PCR amplification of a DNA fragment containing exon 8 of the CBS gene was employed to determine the genotypes. Additionally, Bsrl restriction enzyme digestion of the PCR products was performed in all samples from carriers of the insertion, to test for concurrent presence of a second mutation (T833C) in the CBS gene. Results. The insertion was found in 21 out of 101 patients (20.8%; allele frequency 0.109) and in 20 out of 101 controls (19.8%; allele frequency 0.114), yielding a relative risk for venous thrombosis related to the 844ins68 CBS mutation close to 1.0. In addition, the T833C CBS mutation was detected in all alleles carrying the 844ins68 CBS insertion, confirming the co- inheritance of the two mutations. Interpretation and Conclusions. Our findings do not support the hypothesis that the 844ins68 mutation in the CBS gene is a genetic risk factor for venous thrombosis.
Resumo:
Preeclampsia (PE) is characterized by hypertension and proteinuria, occurring after the 20th week of pregnancy in women who have had no previous symptoms. The disease progresses with generalized vasoconstriction and endothelial dysfunction. Clinically, it is important to diagnose the severe form of the disease (sPE), in which blood pressure and proteinuria are much higher. Recently, the gestational age (GA) of the onset of PE has led to the classification of this disease as early (GA <34 weeks) and late (GA >= 34 weeks). Several genetic polymorphisms affecting endothelial nitric oxide synthase (eNOS) levels or function were described, including G894T (Glu298Asp), VNTR b/a (variable-number 27-bp tandem repeat) and T-786C (promoter) polymorphisms. Thus, the aim of this study was to compare the distribution of G894T, VNTR b/a and T-786C polymorphisms and their haplotypes in Brazilian early and late sPE, as well as in normotensive pregnant. A total of 201 women were evaluated, 53 with early sPE, 45 with late sPE and 103 as normotensive pregnant women. The frequency of 894T allele was higher in late sPE vs normotensive pregnant, and 894TT genotype was higher in late sPE vs early sPE and normotensive pregnant. For VNTR b/a polymorphism, higher frequencies of aa genotype and a allele were observed in early sPE vs late sPE and normotensive pregnant. Besides, the frequency of haplotype T-b-C was higher in late sPE vs early sPE and normotensive pregnant. Considering the results found for eNOS polymorphisms, it is possible to suggest that the functional alterations induced by these two polymorphisms may influence the time of severe PE onset, although both alterations are putatively associated with low NO bioavailability. However, other studies are necessary to validate these findings and clarify this issue. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE: Nitric oxide (NO) inhibits thrombus formation, vascular contraction, and smooth muscle cell proliferation. We investigated whether NO release is enhanced after endothelial NO synthase (eNOS) gene transfer in atherosclerotic human carotid artery ex vivo. METHODS AND RESULTS: Western blotting and immunohistochemistry revealed that transduction enhanced eNOS expression; however, neither nitrite production nor NO release measured by porphyrinic microsensor was altered. In contrast, transduction enhanced NO production in non-atherosclerotic rat aorta and human internal mammary artery. In transduced carotid artery, calcium-dependent eNOS activity was minimal and did not differ from control conditions. Vascular tetrahydrobiopterin concentrations did not differ between the experimental groups.Treatment of transduced carotid artery with FAD, FMN, NADPH, L-arginine, and either sepiapterin or tetrahydrobiopterin did not alter NO release. Superoxide formation was similar in transduced carotid artery and control. Treatment of transduced carotid artery with superoxide dismutase (SOD), PEG-SOD, PEG-catalase did not affect NO release. CONCLUSIONS: eNOS transduction in atherosclerotic human carotid artery results in high expression without any measurable activity of the recombinant protein. The defect in the atherosclerotic vessels is neither caused by cofactor deficiency nor enhanced NO breakdown. Since angioplasty is performed in atherosclerotic arteries,eNOS gene therapy is unlikely to provide clinical benefit.
Resumo:
OBJECTIVE: We hypothesized that, similar to idiopathic hip osteonecrosis, the T-786C mutation of the endothelial nitric oxide synthase (eNOS) gene affecting nitric oxide (NO) production was associated with neuralgia-inducing cavitational osteonecrosis of the jaws (NICO). DESIGN: In 22 NICO patients, not having taken bisphosphonates, mutations affecting NO production (eNOS T-786C, stromelysin 5A6A) were measured by polymerase chain reaction. Two healthy normal control subjects were matched per case by race and gender. RESULTS: Homozygosity for the mutant eNOS allele (TT) was present in 6 out of 22 patients (27%) with NICO compared with 0 out of 44 (0%) race and gender-matched control subjects; heterozygosity (TC) was present in 8 patients (36%) versus 15 control subjects (34%); and the wild-type normal genotype (CC) was present in 9 patients (36%) versus 29 controls (66%) (P = .0008). The mutant eNOS T-786C allele was more common in cases (20 out of 44 [45%]) than in control subjects (15 out of 88 [17%]) (P = .0005). The distribution of the stromelysin 5A6A genotype in cases did not differ from control subjects (P = .13). CONCLUSIONS: The eNOS T-786C polymorphism affecting NO production is associated with NICO, may contribute to the pathogenesis of NICO, and may open therapeutic medical approaches to treatment of NICO through provision of L-arginine, the amino-acid precursor of NO.
Resumo:
The biosynthesis of DIMBOA, a pesticidal secondary metabolite of maize, branches off the tryptophan pathway. We have previously demonstrated that indole is the last intermediate common to both the tryptophan and hydroxamic acid pathways. The earliest discovered mutant in the DIMBOA pathway, bxbx (benzoxazineless), is deficient in the production of DIMBOA and related compounds. This paper presents evidence that a gene identified by Kramer and Koziel [Kramer, V. C. & Koziel, M. G. (1995) Plant Mol. Biol. 27, 1183–1188] as maize tryptophan synthase α (TSA) is the site of the genetic lesion in the DIMBOA-deficient mutant maize line bxbx. We demonstrate that the TSA gene has sustained a 924-bp deletion in bxbx compared with its counterpart in wild-type maize. We report that the TSA gene maps to the same location as the bxbx mutation, on the short arm of chromosome 4. We present evidence that the very early and very high level of expression of TSA corresponds to the timing and level of DIMBOA biosynthesis but is strikingly different from the expression of the maize tryptophan synthase β (TSB) genes. We show that feeding indole to bxbx seedlings restores their ability to synthesize DIMBOA. We conclude that the maize enzyme initially named tryptophan synthase α in fact is a DIMBOA biosynthetic enzyme, and we propose that it be renamed indole synthase. This work confirms and enlarges upon the findings of Frey et al. [Frey, M. Chomet, P., Glawischniq, E., Stettner, C., Grün, S., Winklmair, A., Eisenreich, W., Bacher, A., Meeley, R. B., Briggs, S. P., Simcox, K. & Gierl, A. (1997) Science 277, 696–699], which appeared while the present paper was in review.
Resumo:
Nitric oxide (NO), synthesized from l-arginine by NO synthases (NOS), plays an essential role in the regulation of cerebrovascular tone. Adenoviral vectors have been widely used to transfer recombinant genes to different vascular beds. To determine whether the recombinant endothelial NOS (eNOS) gene can be delivered in vivo to the adventitia of cerebral arteries and functionally expressed, a replication-incompetent adenoviral vector encoding eNOS gene (AdCMVNOS) or β-galactosidase reporter gene (AdCMVLacZ) was injected into canine cerebrospinal fluid (CSF) via the cisterna magna (final viral titer in CSF, 109 pfu/ml). Adventitial transgene expression was demonstrated 24 h later by β-galactosidase histochemistry and quantification, eNOS immunohistochemistry, and Western blot analysis of recombinant eNOS. Electron microscopy immunogold labeling indicated that recombinant eNOS protein was expressed in adventitial fibroblasts. In AdCMVNOS-transduced arteries, basal cGMP production and bradykinin-induced relaxations were significantly augmented when compared with AdCMVLacZ-transduced vessels (P < 0.05). The increased receptor-mediated relaxations and cGMP production were inhibited by eNOS inhibitors. In addition, the increase in cGMP production was reversed in the absence of calcium, suggesting that the increased NO production did not result from inducible NOS expression. The present study demonstrates the successful in vivo transfer and functional expression of recombinant eNOS gene in large cerebral arteries. It also suggests that perivascular eNOS gene delivery via the CSF is a feasible approach that does not require interruption of cerebral blood flow.
Resumo:
An allele of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene (Md-ACS1), the transcript and translated product of which have been identified in ripening apples (Malus domestica), was isolated from a genomic library of the apple cultivar, Golden Delicious. The predicted coding region of this allele (ACS1-2) showed that seven nucleotide substitutions in the corresponding region of ACS1-1 resulted in just one amino acid transition. A 162-bp sequence characterized as a short interspersed repetitive element retrotransposon was inserted in the 5′-flanking region of ACS1-2 corresponding to position −781 in ACS1-1. The XhoI site located near the 3′ end of the predicted coding region of ACS1-2 was absent from the reverse transcriptase-polymerase chain reaction product, revealing that exclusive transcription from ACS1-1 occurs during ripening of cv Golden Delicious fruit. DNA gel-blot and polymerase chain reaction analyses of genomic DNAs showed clearly that apple cultivars were either heterozygous for ACS1-1 and ACS1-2 or homozygous for each type. RNA gel-blot analysis of the ACS1-2 homozygous Fuji apple, which produces little ethylene and has a long storage life, demonstrated that the level of transcription from ACS1-2 during the ripening stage was very low.
Resumo:
We investigated the expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes in carnation (Dianthus caryophyllus cv White Sim) under conditions previously shown to induce ethylene biosynthesis. These included treatment of flowers with 2,4-dichlorophenoxyacetic acid, ethylene, LiCl, cycloheximide, and natural and pollination-induced flower senescence. Accumulation of ACC synthase transcripts in leaves following mechanical wounding and treatment with 2,4-dichlorophenoxyacetic acid or LiCl was also determined by RNA gel-blot analysis. As in other species, the carnation ACC synthase genes were found to be differentially regulated in a tissue-specific manner. DCACS2 and DCACS3 were preferentially expressed in styles, whereas DCACS1 mRNA was most abundant in petals. Cycloheximide did not induce increased accumulation of ACC synthase transcripts in carnation flowers, whereas the expression of ACC synthase was up-regulated by auxin, ethylene, LiCl, pollination, and senescence in a floral-organ-specific manner. Expression of the three ACC synthases identified in carnation did not correspond to elevated ethylene biosynthesis from wounded or auxin-treated leaves, and there are likely additional members of the carnation ACC synthase gene family responsible for ACC synthase expression in vegetative tissues.
Resumo:
Microspore-derived embryos of Brassica napus cv Reston were used to examine the effects of exogenous (+)-abscisic acid (ABA) and related compounds on the accumulation of very-long-chain monounsaturated fatty acids (VLCMFAs), VLCMFA elongase complex activity, and induction of the 3-ketoacyl-coenzyme A synthase (KCS) gene encoding the condensing enzyme of the VLCMFA elongation system. Of the concentrations tested, (+)-ABA at 10 μm showed the strongest effect. Maximum activity of the elongase complex, observed 6 h after 10 μm (+)-ABA treatment, was 60% higher than that of the untreated embryos at 24 h. The transcript of the KCS gene was induced by 10 μm (+)-ABA within 1 h and further increased up to 6 h. The VLCMFAs eicosenoic acid (20:1) and erucoic acid (22:1) increased by 1.5- to 2-fold in embryos treated with (+)-ABA for 72 h. Also, (+)-8′-methylene ABA, which is metabolized more slowly than ABA, had a stronger ABA-like effect on the KCS gene transcription, elongase complex activity (28% higher), and level of VLCMFAs (25–30% higher) than ABA. After 24 h approximately 60% of the added (+)-[3H]ABA (10 μm) was metabolized, yielding labeled phaseic and dihydrophaseic acid. This study demonstrates that (+)-ABA promotes VLCMFA biosynthesis via increased expression of the KCS gene and that reducing ABA catabolism would increase VLCMFAs in microspore-derived embryos.
Resumo:
The human inducible nitric oxide synthase (hiNOS) gene is expressed in several disease states and is also important in the normal immune response. Previously, we described a cytokine-responsive enhancer between −5.2 and −6.1 kb in the 5′-flanking hiNOS promoter DNA, which contains multiple nuclear factor κβ (NF-κB) elements. Here, we describe the role of the IFN-Jak kinase-Stat (signal transducer and activator of transcription) 1 pathway for regulation of hiNOS gene transcription. In A549 human lung epithelial cells, a combination of cytokines tumor necrosis factor-α, interleukin-1β, and IFN-γ (TNF-α, IL-1β, and IFN-γ) function synergistically for induction of hiNOS transcription. Pharmacological inhibitors of Jak2 kinase inhibit cytokine-induced Stat 1 DNA-binding and hiNOS gene expression. Expression of a dominant-negative mutant Stat 1 inhibits cytokine-induced hiNOS reporter expression. Site-directed mutagenesis of a cis-acting DNA element at −5.8 kb in the hiNOS promoter identifies a bifunctional NF-κB/Stat 1 motif. In contrast, gel shift assays indicate that only Stat 1 binds to the DNA element at −5.2 kb in the hiNOS promoter. Interestingly, Stat 1 is repressive to basal and stimulated iNOS mRNA expression in 2fTGH human fibroblasts, which are refractory to iNOS induction. Overexpression of NF-κB activates hiNOS promoter–reporter expression in Stat 1 mutant fibroblasts, but not in the wild type, suggesting that Stat 1 inhibits NF-κB function in these cells. These results indicate that both Stat 1 and NF-κB are important in the regulation of hiNOS transcription by cytokines in a complex and cell type-specific manner.
Resumo:
Gangliosides, sialic acid-containing glycosphingolipids, are abundant in the vertebrate (mammalian) nervous system. Their composition is spatially and developmentally regulated, and gangliosides have been widely believed to lay essential roles in establishment of the nervous system, especially in neuritogenesis and synaptogenesis. However, this has never been tested directly. Here we report the generation of mice with a disrupted beta 1,4-N-acetylgalactosaminyltransferase (GM2/GD2 synthase; EC 2.4.1.92) gene. The mice lacked all complex gangliosides. Nevertheless, they did not show any major histological defects in their nervous systems or in gross behavior. Just a slight reduction in the neural conduction velocity from the tibial nerve to the somatosensory cortex, but not to the lumbar spine, was detected. These findings suggest that complex gangliosides are required in neuronal functions but not in the morphogenesis and organogenesis of the brain. The higher levels of GM3 and GD3 expressed in the brains of these mutant mice may be able to compensate for the lack of complex gangliosides.
Resumo:
Plant-specific polyketide synthase genes constitute a gene superfamily, including universal chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing) (EC 2.3.1.74)] genes, sporadically distributed stilbene synthase (SS) genes, and atypical, as-yet-uncharacterized CHS-like genes. We have recently isolated from Gerbera hybrida (Asteraceae) an unusual CHS-like gene, GCHS2, which codes for an enzyme with structural and enzymatic properties as well as ontogenetic distribution distinct from both CHS and SS. Here, we show that the GCHS2-like function is encoded in the Gerbera genome by a family of at least three transcriptionally active genes. Conservation within the GCHS2 family was exploited with selective PCR to study the occurrence of GCHS2-like genes in other Asteraceae. Parsimony analysis of the amplified sequences together with CHS-like genes isolated from other taxa of angiosperm subclass Asteridae suggests that GCHS2 has evolved from CHS via a gene duplication event that occurred before the diversification of the Asteraceae. Enzyme activity analysis of proteins produced in vitro indicates that the GCHS2 reaction is a non-SS variant of the CHS reaction, with both different substrate specificity (to benzoyl-CoA) and a truncated catalytic profile. Together with the recent results of Durbin et al. [Durbin, M. L., Learn, G. H., Jr., Huttley, G. A. & Clegg, M. T. (1995) Proc. Natl. Acad. Sci. USA 92, 3338-3342], our study confirms a gene duplication-based model that explains how various related functions have arisen from CHS during plant evolution.
Resumo:
A single gene (mas) encodes the multifunctional enzyme that catalyzes the synthesis of very long chain multiple methyl branched fatty acids called mycocerosic acids that are present only in slow-growing pathogenic mycobacteria and are thought to be important for pathogenesis. To achieve a targeted disruption of mas, an internal 2-kb segment of this gene was replaced with approximately the same size hygromycin-resistance gene (hyg), such that hyg was flanked by 4.7- and 1.4-kb segments of mas. Transformation of Mycobacterium bovis BCG with this construct in a plasmid that cannot replicate in mycobacteria yielded hygromycin-resistant transformants. Screening of 38 such transformants by PCR revealed several transformants representing homologous recombination with single crossover and one with double crossover. With primers representing the hyg termini and those representing the mycobacterial genome segments outside that used to make the transformation construct, the double-crossover mutant yielded PCR products expected from either side of hyg. Gene replacement was further confirmed by the absence of the vector and the 2-kb segment of mas replaced by hyg from the genome of the mutant. Thin-layer and radio-gas chromatographic analyses of the lipids derived from [1-14C]propionate showed that the mutant was incapable of synthesizing mycocerosic acids and mycosides. Thus, homologous recombination with double crossover was achieved in a slow-growing mycobacterium with an intron-containing RecA. The resulting mas-disrupted mutant should allow testing of the postulated roles of mycosides in pathogenesis.
Resumo:
Sterol-regulated transcription of the gene for rat farnesyl diphosphate (FPP) synthase (geranyl-diphosphate:isopentenyl-diphosphate geranyltranstransferase, EC 2.5.1.10) is dependent in part on the binding of the ubiquitous transcription factor NF-Y to a 6-bp element within the proximal promoter. Current studies identify a second element in this promoter that is also required for sterol-regulated transcription in vivo. Mutation of three nucleotides (CAC) within this element blocks the 8-fold induction of FPP synthase promoter-reporter genes that normally occurs when the transfected cells are incubated in medium deprived of sterols. Gel mobility-shift assays demonstrate that the transcriptionally active 68-kDa fragment of the sterol regulatory element (SRE-1)-binding protein assays (SREBP-1) binds to an oligonucleotide containing the wild-type sequence but not to an oligonucleotide in which the CAC has been mutated. DNase 1 protection pattern (footprint) analysis indicates that SREBP-1 binds to nucleotides that include the CAC. Both the in vivo and in vitro assays are affected by mutagenesis of nucleotides adjacent to the CAC. Coexpression of SREBP with a wild-type FPP synthase promoter-reporter gene in CV-1 cells results in very high levels of reporter activity that is sterol-independent. In contrast, the reporter activity remained low when the promoter contained a mutation in the CAC trinucleotide. We conclude that sterol-regulated transcription of FPP synthase is controlled in part by the interaction of SREBP with a binding site that we have termed SRE-3. Identification of this element may prove useful in the identification of other genes that are both regulated by SREBP and involved in lipid biosynthesis.