576 resultados para photoelectrochemical disinfection
Resumo:
Funding and support for this project was provided by NSFC (Grant No. 40771015), and Key International Science and Technology Cooperation Projects (Grant No. 22007DFC20180). The authors also gratefully acknowledge the support of Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (Grant No. 2006BAD01B06-02). The authors thank the CDCs of Daqing, Beijing, Tianjin, Zhengzhou, Changsha and Shenzhen cities for field and laboratory technical support.
Resumo:
The photoelectrocatalytic effect for the reduction of CO2 mediated with methylviologen (MV) was studied at mercury, polished silver and roughened silver electrodes using electrochemical and surface-enhanced Raman scattering (SERS) techniques. A large photoelectrocatalytic effect for the reduction of CO2 in the presence of MV was observed at the roughened silver electrode, whereas there was only a very small photoelectrocatalytic current at a more negative potential on mercury and polished silver electrodes. The SERS spectra of MV in the presence and absence of CO2, along with the electrochemical results, demonstrate that the surface adsorbed complexes, MV+ -Ag and MV0-Ag, played a role as the mediator for photoinduced electron transfer to CO2 in the solution. The results also suggest that the surface plasmon resonance of the nanoscale silver particle contributes to the overall photoelectrocatalytic effect on a roughened silver electrode.
Resumo:
Three kinds of TiO2 nanostructured thin films and their CdS-sensitized films, consisting of different sizes of TiO2 nanoparticles prepared with different methods, have been investigated. The surface photovoltage spectra (SPS) measurements indicate that the density of surface states on TiO2 is likely dependent upon the details of prepared methods. TiO2 particles prepared from basic sol have more surface states than that prepared from acidic sol. When the TiO2 thin films prepared using the TiO2 sols were sensitized by CdS particles, the SPS responses relative to the surface states on TiO2 from 350 to 800 nm were decreased. The photoelectrochemical properties of nanostructured TiO2 electrodes suggest that the fewer the surface states and the smaller the particle sizes of TiO2, the larger the photocurrent response. For CdS sensitized TiO2 thin film electrode, it is shown that the semiconductor sensitization is an efficient way to decrease the influence of surface states on the charge separation, and can improve the intensity of photocurrent response. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The growth and proliferation of invasive bacteria in engineered systems is an ongoing problem. While there are a variety of physical and chemical processes to remove and inactivate bacterial pathogens, there are many situations in which these tools are no longer effective or appropriate for the treatment of a microbial target. For example, certain strains of bacteria are becoming resistant to commonly used disinfectants, such as chlorine and UV. Additionally, the overuse of antibiotics has contributed to the spread of antibiotic resistance, and there is concern that wastewater treatment processes are contributing to the spread of antibiotic resistant bacteria.
Due to the continually evolving nature of bacteria, it is difficult to develop methods for universal bacterial control in a wide range of engineered systems, as many of our treatment processes are static in nature. Still, invasive bacteria are present in many natural and engineered systems, where the application of broad acting disinfectants is impractical, because their use may inhibit the original desired bioprocesses. Therefore, to better control the growth of treatment resistant bacteria and to address limitations with the current disinfection processes, novel tools that are both specific and adaptable need to be developed and characterized.
In this dissertation, two possible biological disinfection processes were investigated for use in controlling invasive bacteria in engineered systems. First, antisense gene silencing, which is the specific use of oligonucleotides to silence gene expression, was investigated. This work was followed by the investigation of bacteriophages (phages), which are viruses that are specific to bacteria, in engineered systems.
For the antisense gene silencing work, a computational approach was used to quantify the number of off-targets and to determine the effects of off-targets in prokaryotic organisms. For the organisms of
Regarding the work with phages, the disinfection rates of bacteria in the presence of phages was determined. The disinfection rates of
In addition to determining disinfection rates, the long-term bacterial growth inhibition potential was determined for a variety of phages with both Gram-negative and Gram-positive bacteria. It was determined, that on average, phages can be used to inhibit bacterial growth for up to 24 h, and that this effect was concentration dependent for various phages at specific time points. Additionally, it was found that a phage cocktail was no more effective at inhibiting bacterial growth over the long-term than the best performing phage in isolation.
Finally, for an industrial application, the use of phages to inhibit invasive
In conclusion, this dissertation improved the current methods for designing antisense gene silencing targets for prokaryotic organisms, and characterized phages from an engineering perspective. First, the current design strategy for antisense targets in prokaryotic organisms was improved through the development of an algorithm that minimized the number of off-targets. For the phage work, a framework was developed to predict the disinfection rates in terms of the initial phage and bacterial concentrations. In addition, the long-term bacterial growth inhibition potential of multiple phages was determined for several bacteria. In regard to the phage application, phages were shown to protect both final product yields and yeast concentrations during fermentation. Taken together, this work suggests that the rational design of phage treatment is possible and further work is needed to expand on this foundation.
Resumo:
With the aim of improving the performance and extending the range of applications of mesoporous WO₃films, which were initially developed for the photoelectrochemical oxidation of water, we investigated the effect of a number of dopants (lithium, silicon, ruthenium, molybdenum and tin) upon the transparency, crystallinity, porosity and conductivity of the modified films. Tin, molybdenum and silicon were shown to improve the electrochromic behaviour of the layers whereas ruthenium enhanced considerably the electronic conductivity of the WO₃films. Interestingly, most of the dopants also affected the film morphology and the size of WO₃nanocrystals. X-ray photoelectron spectra revealed absence of significant segregation of doping elements within the film. Raman analyses confirmed that the monoclinic structure of WO₃films does not change upon substitutional cation doping; thus, the crystallinity of WO₃films is maintained.
Resumo:
We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries.
Resumo:
Microbiologically contaminated water severely impacts public health in low-income countries, where treated water supplies are often inaccessible to much of the population. Groundwater represents a water source that commonly has better microbiological quality than surface water. A 2-month intensive flow and quality monitoring programme of a spring in a densely settled, unsewered parish of Kampala, Uganda, revealed the persistent presence of high chloride and nitrate concentrations that reflect intense loading of sewage in the spring’s catchment. Conversely, thermotolerant coliform bacteria counts in spring water samples remained very low outside of periods of intense rainfall. Laboratory investigations of mechanisms responsible for this behavior, achieved by injecting a pulse of H40/1 bacteriophage tracer into a column packed with locally derived granular laterite, resulted in near-total tracer adsorption. X-ray diffraction (XRD) analysis showed the laterite to consist predominantly of quartz and kaolinite, with minor amounts (<5%) of haematite. Batch studies comparing laterite adsorption capacity with a soil having comparable mineralogy, but with amorphous iron oxide rather than haematite, showed the laterite to have a significantly greater capacity to adsorb bacteriophage. Batch study results using pure haematite confirmed that its occurrence in laterite contributes substantially to micro-organism attenuation observed and serves to protect underlying groundwater.
Resumo:
The kinetics of photoreduction of methyl orange by ethylenediaminetetraacetic acid (EDTA) sensitized by colloidal CdS are reported as a function of [methyl orange], [O2] and [EDTA]. The results are interpreted using a reaction scheme which was proposed in an earlier paper for the same reaction sensitized by a powdered dispersion of highly crystalline CdS. An analysis of the results for the CdS colloid based on this reaction scheme shows that the rate of dye reduction by photogenerated electrons is approximately 50 times greater than the rate of oxygen reduction and the rate of scavenging of the photogenerated holes is approximately 7000 times greater than the rate of recombination. These findings are discussed in the light of similar observations reported for powdered CdS.
Resumo:
Burkholderia cepacia complex (Bcc) comprises nine closely related species or genomovars. It is an important causative agent of opportunistic infections and waterborne nosocomial infections. B. cepacia (formerly genomovar I) was identified from the blood culture of a baby in our neonatal unit (NU) in March 2005. B. cepacia was isolated four times from clinical specimens since the introduction of non-touch taps in the NU from 2000 to 2005 and only once from 1994 to 2000. Environmental samples were collected from the NU, including tap water from non-touch taps. Clinical and environmental isolates of Bcc were characterized using molecular identification and strain typing. A literature review was undertaken to delineate a method for eradication of Bcc. Several variations for hot water eradication of the organism from the taps were attempted. Genotyping and molecular analysis revealed that tap water isolates were B. cenocepacia which was a different species from the B. cepacia isolated from blood cultures of the neonate. However, B. cenocepacia has been known to cause nosocomial outbreaks and it was eventually eradicated from the NU by using repeated thermal shock (hot water at 65 degrees C for 10 min), changing taps and decolonizing sinks with hypochlorite. Molecular typing is useful in assisting the investigation of Bcc nosocomial infections.
Resumo:
The use of semiconductor photocatalysis for treatment of water and air has been the topic of intense research activity over the past 20 years. This powerful process has also been extended to the disinfection of environments contaminated with pathogenic micro-organisms. This review summarizes recent developments concerned with the photocatalytic treatment of water contaminated with pathogenic micro-organisms presenting a potential hazard to animals and human beings.
Resumo:
Carbon dioxide was reduced photocatalytically using aqueous CdS or ZnS colloids containing tetramethylammonium chloride to give the dimeric and tetrameric products namely, oxalate, glyoxylate, glycolate and tartrate. A model is presented to explain the role of the tetramethylammonium ions. Studies were also performed using ZnO, SiC, BaTiO3 and Sr TiO3, which in the absence of tetramethylammonium ions produced formate and formaldehyde. The relative quantum efficiencies of the six semiconductors were related to their band gaps and conduction band potentials. The role and effectiveness of several 'hole acceptor' (electron donor) compounds in this process is shown to be related to their redox potentials.