996 resultados para phasor measurement
Resumo:
This paper presents an approach for dynamic state estimation of aggregated generators by introducing a new correction factor for equivalent inter-area power flows. The spread of generators from the center of inertia of each area is summarized by the correction term α on the equivalent power flow between the areas and is applied to the identification and estimation process. A nonlinear time varying Kalman filter is applied to estimate the equivalent angles and velocities of coherent areas by reducing the effect of local modes on the estimated states. The approach is simulated on two test systems and the results show the effect of the correction factor and the performance of the state estimation by estimating the inter-area dynamics of the system.
Resumo:
Loading margin sensitivity (LMS) has been widely used in applications in the realm of voltage stability assessment and control. Typically, LMS is derived based on system equilibrium equations near bifurcation and therefore requires full detailed system model and significant computation effort. Availability of phasor measurement units (PMUs) due to the recent development of wide-area monitoring system (WAMS) provides an alternative computation-friendly approach for calculating LMS. With such motivation, this work proposes measurement-based wide-area loading margin sensitivity (WALMS) in bulk power systems. The proposed sensitivity, with its simplicity, has great potential to be embedded in real-time applications. Moreover, the calculation of the WALMS is not limited to low voltage near bifurcation point. A case study on IEEE 39-bus system verifies the proposed sensitivity. Finally, a voltage control scenario demonstrates the potential application of the WALMS.
Resumo:
Synchronous islanded operation involves continuously holding an islanded power network in virtual synchronism with the main power system to aid paralleling and avoid potentially damaging out-of-synchronism reclosure. This requires phase control of the generators in the island and the transmission of a reference signal from a secure location on the main power system. Global positioning system (GPS) time-synchronized phasor measurements transmitted via an Internet protocol (IP) are used for the reference signal. However, while offering low cost and a readily available solution for distribution networks, IP communications have variable latency and are susceptible to packet loss, which can make time-critical control applications difficult. This paper investigates the ability of the phase-control system to tolerate communications latency. Phasor measurement conditioning algorithms that can tolerate latency are used in the phase-control loop of a 50-kVA diesel generator. © 2010 IEEE.
Resumo:
This paper outlines the use of phasor measurement unit (PMU) records to validate models of fixed speed induction generator (FSIG)-based wind farms during frequency transients. Wind turbine manufacturers usually create their own proprietary models which they can supply to power system utilities for stability studies, subject to confidentiality agreements. However, it is desirable to confirm the accuracy of supplied models with measurements from the particular installation, in order to assess their validity under real field conditions. This is prudent due to possible changes in control algorithms and design retrofits, not accurately reflected or omitted in the supplied model. One important aspect of such models, especially for smaller power systems with limited inertia, is their accuracy during system frequency transients. This paper, therefore, assesses the accuracy of FSIG models with regard to frequency stability, and hence validates a subset of the model dynamics. Such models can then be used with confidence to assess wider system stability implications. The measured and simulated response of a wind farm using doubly fed induction generator (DFIG) technology is also assessed.
Resumo:
This paper presents a new method for tracking Thévenin equivalent parameters for a power system at a node using local Phasor Measurement Unit (PMU) measurements. Three consecutive phasor measurements for voltage and current, recorded at one location, are used. The phase drifts caused by the measurement slip frequency are first determined and phase angles of the measured phasors are corrected so that the corrected phasors are synchronized to the same reference. The synchronized phasors are then used to determine the equivalent Thévenin parameters of the system.
Resumo:
This paper analyzes data captured by a phasor measurement unit at a wind farm, employing two-speed induction generators, and investigates aspects of the control system's interaction with the power system. Composite superimposed transient events are proposed as a method to improve the quality of the analysis and reduce errors caused by unknowns, such as wind speed variation. A Mathworks SimPowerSystems model validates the inertia contribution of the wind farm, which is an important parameter in power systems with high wind penetration. Transients caused by turbine speed transitions are identified and explained. The analysis also highlights areas where wind farm control should be improved if useful inertia contribution is to be provided.
Resumo:
Anti-islanding protection is becoming increasingly important due to the rapid installation of distributed generation from renewable resources like wind, tidal and wave, solar PV, bio-fuels, as well as from other resources like diesel. Unintentional islanding presents a potential risk for damaging utility plants and equipment connected from the demand side, as well as to public and personnel in utility plants. This paper investigates automatic islanding detection. This is achieved by deploying a statistical process control approach for fault detection with the real-time data acquired through a wide area measurement system, which is based on Phasor Measurement Unit (PMU) technology. In particular, the principal component analysis (PCA) is used to project the data into principal component subspace and residual space, and two statistics are used to detect the occurrence of fault. Then a fault reconstruction method is used to identify the fault and its development over time. The proposed scheme has been used in a real system and the results have confirmed that the proposed method can correctly identify the fault and islanding site.
Resumo:
This paper presents a preliminary study of developing a novel distributed adaptive real-time learning framework for wide area monitoring of power systems integrated with distributed generations using synchrophasor technology. The framework comprises distributed agents (synchrophasors) for autonomous local condition monitoring and fault detection, and a central unit for generating global view for situation awareness and decision making. Key technologies that can be integrated into this hierarchical distributed learning scheme are discussed to enable real-time information extraction and knowledge discovery for decision making, without explicitly accumulating and storing all raw data by the central unit. Based on this, the configuration of a wide area monitoring system of power systems using synchrophasor technology, and the functionalities for locally installed open-phasor-measurement-units (OpenPMUs) and a central unit are presented. Initial results on anti-islanding protection using the proposed approach are given to illustrate the effectiveness.
Resumo:
Two case studies are presented in this paper to demonstrate the impact of different power system operation conditions on the power oscillation frequency modes in the Irish power system. A simplified 2 area equivalent of the Irish power system has been used in this paper, where area 1 represents the Republic of Ireland power system and area 2 represents the Northern Ireland power system.
The potential power oscillation frequency modes on the interconnector during different operation conditions have been analysed in this paper. The main objective of this paper is to analyse the influence of different operation conditions involving wind turbine generator (WTG) penetration on power oscillation frequency modes using phasor measurement unit (PMU) data.
Fast Fourier transform (FFT) analysis was performed to identify the frequency oscillation mode while correlation coefficient analysis was used to determine the source of the frequency oscillation. The results show that WTG, particularly fixed speed induction generation (FSIG), gives significant contribution to inter-area power oscillation frequency modes during high WTG operation.
Resumo:
The availability of electricity is fundamental to modern society. It is at the top of the list of critical infrastructures and its interruption can have severe consequences. This highly important system is now evolving to become more reliable, efficient, and clean. This evolving infrastructure has become known as the smart grid; and these future smart grid systems will rely heavily on ICT. This infrastructure will require many servers and due to the nature of the grid, many of these systems will be geographically diverse requiring communication links. At the heart of this ICT infrastructure will be security. At each level of the smart grid from smart metering right through to remote sensing and control networks, security will be a key factor for system design consideration. With an increased number of ICT systems in place the security risk also increases. In this paper the authors discuss the changing nature of security in relation to the smart grid by looking at the move from legacy systems to more modern smart grid systems. The potential planes of attack for future smart grid systems are identified, and the general anatomy of a cyber-attack is presented. The authors then introduce the various threat levels of different types of attack and the mitigation techniques that could be put in place for each. Finally, the authors' introduce a Phasor Measurement Unit (PMU) communication system (operated by the authors) that can be used as a test-bed for some of the proposed future security research.
Resumo:
Systematic principal component analysis (PCA) methods are presented in this paper for reliable islanding detection for power systems with significant penetration of distributed generations (DGs), where synchrophasors recorded by Phasor Measurement Units (PMUs) are used for system monitoring. Existing islanding detection methods such as Rate-of-change-of frequency (ROCOF) and Vector Shift are fast for processing local information, however with the growth in installed capacity of DGs, they suffer from several drawbacks. Incumbent genset islanding detection cannot distinguish a system wide disturbance from an islanding event, leading to mal-operation. The problem is even more significant when the grid does not have sufficient inertia to limit frequency divergences in the system fault/stress due to the high penetration of DGs. To tackle such problems, this paper introduces PCA methods for islanding detection. Simple control chart is established for intuitive visualization of the transients. A Recursive PCA (RPCA) scheme is proposed as a reliable extension of the PCA method to reduce the false alarms for time-varying process. To further reduce the computational burden, the approximate linear dependence condition (ALDC) errors are calculated to update the associated PCA model. The proposed PCA and RPCA methods are verified by detecting abnormal transients occurring in the UK utility network.
Resumo:
In this paper, our previous work on Principal Component Analysis (PCA) based fault detection method is extended to the dynamic monitoring and detection of loss-of-main in power systems using wide-area synchrophasor measurements. In the previous work, a static PCA model was built and verified to be capable of detecting and extracting system faulty events; however the false alarm rate is high. To address this problem, this paper uses a well-known ‘time lag shift’ method to include dynamic behavior of the PCA model based on the synchronized measurements from Phasor Measurement Units (PMU), which is named as the Dynamic Principal Component Analysis (DPCA). Compared with the static PCA approach as well as the traditional passive mechanisms of loss-of-main detection, the proposed DPCA procedure describes how the synchrophasors are linearly
auto- and cross-correlated, based on conducting the singular value decomposition on the augmented time lagged synchrophasor matrix. Similar to the static PCA method, two statistics, namely T2 and Q with confidence limits are calculated to form intuitive charts for engineers or operators to monitor the loss-of-main situation in real time. The effectiveness of the proposed methodology is evaluated on the loss-of-main monitoring of a real system, where the historic data are recorded from PMUs installed in several locations in the UK/Ireland power system.
Resumo:
This paper presents a framework for a telecommunications interface which allows data from sensors embedded in Smart Grid applications to reliably archive data in an appropriate time-series database. The challenge in doing so is two-fold, firstly the various formats in which sensor data is represented, secondly the problems of telecoms reliability. A prototype of the authors' framework is detailed which showcases the main features of the framework in a case study featuring Phasor Measurement Units (PMU) as the application. Useful analysis of PMU data is achieved whenever data from multiple locations can be compared on a common time axis. The prototype developed highlights its reliability, extensibility and adoptability; features which are largely deferred from industry standards for data representation to proprietary database solutions. The open source framework presented provides link reliability for any type of Smart Grid sensor and is interoperable with existing proprietary database systems, and open database systems. The features of the authors' framework allow for researchers and developers to focus on the core of their real-time or historical analysis applications, rather than having to spend time interfacing with complex protocols.
Resumo:
This paper presents the practical use of Prony Analysis to identify small signal oscillation mode parameters from simulated and actual phasor measurement unit (PMU) ringdown data. A well-known two-area four-machine power system was considered as a study case while the latest PMU ringdown data were collected from a double circuit 275 kV main interconnector on the Irish power system. The eigenvalue analysis and power spectral density were also conducted for the purpose of comparison. The capability of Prony Analysis to identify the mode parameters from three different types of simulated PMU ringdown data has been shown successfully. Furthermore, the results indicate that the Irish power system has dominant frequency modes at different frequencies. However, each mode has good system damping.
Resumo:
In this brief, a hybrid filter algorithm is developed to deal with the state estimation (SE) problem for power systems by taking into account the impact from the phasor measurement units (PMUs). Our aim is to include PMU measurements when designing the dynamic state estimators for power systems with traditional measurements. Also, as data dropouts inevitably occur in the transmission channels of traditional measurements from the meters to the control center, the missing measurement phenomenon is also tackled in the state estimator design. In the framework of extended Kalman filter (EKF) algorithm, the PMU measurements are treated as inequality constraints on the states with the aid of the statistical criterion, and then the addressed SE problem becomes a constrained optimization one based on the probability-maximization method. The resulting constrained optimization problem is then solved using the particle swarm optimization algorithm together with the penalty function approach. The proposed algorithm is applied to estimate the states of the power systems with both traditional and PMU measurements in the presence of probabilistic data missing phenomenon. Extensive simulations are carried out on the IEEE 14-bus test system and it is shown that the proposed algorithm gives much improved estimation performances over the traditional EKF method.