961 resultados para pesticide contaminants
Resumo:
This chapter provides an overview of the Japanese regulatory issues regarding pesticide use in rice paddies and an introduction of the new pesticide registration program. In addition, the experience of the environmental monitoring of pesticides and the modeling approaches used for the calculation of predicted environmental concentrations (PECs) in surface water and ground water systems adjacent to rice paddies in Japan are also discussed. Japan has been one of the major pesticide users in the world. Although having a long history in rice cultivation, the pesticide exposure assessment for paddy rice production received less attention compared with EU and US. Applications of up-to-date techniques and the development of realistic assessment procedures under specific climatic conditions as well as mitigation management practices for controlling pesticide contamination are important for an environmental-friendly rice production. Through the international cooperation and research exchanges, advances in pesticide risk assessment for rice paddies in Asian region and other rice-growing areas in the world would contribute to sustainable rice production. Transplanting of rice seedlings grows almost all rice paddies in Japan. The land preparation starts around April and June, and the harvest season lasts from August to October depending on the region and the rice varieties. Most of the rice paddies are treated with herbicides and other crop protection products, such as fungicides and insecticides that are applied during the crop season accordingly. Newly developed insecticides and fungicides are also applied during seedbed preparation.
Resumo:
Pesticide use in paddy rice production may contribute to adverse ecological effects in surface waters. Risk assessments conducted for regulatory purposes depend on the use of simulation models to determine predicted environment concentrations (PEC) of pesticides. Often tiered approaches are used, in which assessments at lower tiers are based on relatively simple models with conservative scenarios, while those at higher tiers have more realistic representations of physical and biochemical processes. This chapter reviews models commonly used for predicting the environmental fate of pesticides in rice paddies. Theoretical considerations, unique features, and applications are discussed. This review is expected to provide information to guide model selection for pesticide registration, regulation, and mitigation in rice production areas.
Resumo:
Consumer risk assessment is a crucial step in the regulatory approval of pesticide use on food crops. Recently, an additional hurdle has been added to the formal consumer risk assessment process with the introduction of short-term intake or exposure assessment and a comparable short-term toxicity reference, the acute reference dose. Exposure to residues during one meal or over one day is important for short-term or acute intake. Exposure in the short term can be substantially higher than average because the consumption of a food on a single occasion can be very large compared with typical long-term or mean consumption and the food may have a much larger residue than average. Furthermore, the residue level in a single unit of a fruit or vegetable may be higher by a factor (defined as the variability factor, which we have shown to be typically ×3 for the 97.5th percentile unit) than the average residue in the lot. Available marketplace data and supervised residue trial data are examined in an investigation of the variability of residues in units of fruit and vegetables. A method is described for estimating the 97.5th percentile value from sets of unit residue data. Variability appears to be generally independent of the pesticide, the crop, crop unit size and the residue level. The deposition of pesticide on the individual unit during application is probably the most significant factor. The diets used in the calculations ideally come from individual and household surveys with enough consumers of each specific food to determine large portion sizes. The diets should distinguish the different forms of a food consumed, eg canned, frozen or fresh, because the residue levels associated with the different forms may be quite different. Dietary intakes may be calculated by a deterministic method or a probabilistic method. In the deterministic method the intake is estimated with the assumptions of large portion consumption of a ‘high residue’ food (high residue in the sense that the pesticide was used at the highest recommended label rate, the crop was harvested at the smallest interval after treatment and the residue in the edible portion was the highest found in any of the supervised trials in line with these use conditions). The deterministic calculation also includes a variability factor for those foods consumed as units (eg apples, carrots) to allow for the elevated residue in some single units which may not be seen in composited samples. In the probabilistic method the distribution of dietary consumption and the distribution of possible residues are combined in repeated probabilistic calculations to yield a distribution of possible residue intakes. Additional information such as percentage commodity treated and combination of residues from multiple commodities may be incorporated into probabilistic calculations. The IUPAC Advisory Committee on Crop Protection Chemistry has made 11 recommendations relating to acute dietary exposure.
Resumo:
Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are generally estimated be fitting theoretical models to data gathered from field monitoring or laboratory experiments. Transient through-diffusion tests are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. Thes parameters are usually estimated either by approximate eye-fitting calibration or by combining the solution of the direct problem with any available gradient-based techniques. In this work, an automated, gradient-free solver is developed to estimate the mass transport parameters of a transient through-diffusion model. The proposed inverse model uses a particle swarm optimization (PSO) algorithm that is based on the social behavior of animals searching for food sources. The finite difference numerical solution of the forward model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation. The working principle of the new solver is demonstrated and mass transport parameters are estimated from laboratory through-diffusion experimental data. An inverse model based on the standard gradient-based technique is formulated to compare with the proposed solver. A detailed comparative study is carried out between conventional methods and the proposed solver. The present automated technique is found to be very efficient and robust. The mass transport parameters are obtained with great precision.
Resumo:
Enhanced On-farm Monitoring and Mitigation of Pesticide and Nutrient Transport.
Resumo:
Contaminants of man-made and natural origin need to be managed in livestock feeds to protect the health of livestock and that of human consumers of livestock products. This requires access to information on the transfer from feed to food to inform risk profiles and assessments, and to guide management interventions such as regulation or Hazard Analysis Critical Control Point approaches. This paper reviews contaminants of known and potential concern in the production of livestock feeds in Australia and compares existing but differing state and national regulatory standards with international standards. The contaminants considered include man-made organic chemical contaminants (e.g. legacy pesticides), elemental contaminants (e.g. arsenic, cadmium, lead), phytotoxins (e.g. gossypol) and mycotoxins (e.g. aflatoxins). Reference is made to scientific literature and evaluations by regulators to propose maximum levels that can be used for guidance by those involved in managing contamination incidents or developing feed safety programs. © 2013 CSIRO.
Resumo:
The Baltic Sea was studied with respect to selected organic contaminants and their ecotoxicology. The research consisted of analyses of total hydrocarbons, polycyclic aromatic hydrocarbons, bile metabolites, hepatic ethoxyresorufin-O-deethylase (EROD) activity, polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). The contaminants were measured from various matrices, such as seawater, sediment and biota. The methods of analysis were evaluated and refined to comparability of the results. Polyaromatic hydrocarbons, originating from petroleum, are known to be among the most harmful substances to the marine environment. In Baltic subsurface water, seasonal dependence of the total hydrocarbon concentrations (THCs) was seen. Although concentrations of parent polycyclic aromatic hydrocarbons (PAHs) in sediment surface varied between 64 and 5161 ug kg-1 (dw), concentrations above 860 ug kg-1 (dw) were found in all the studied sub-basins of the Baltic Sea. Concentrations commonly considered to substantially increase the risk of liver disease and reproductive impairment in fish, as well as potential effects on growth (above 1000 ug kg-1 dw), were found in all the studied sub-basins of the Baltic Sea except Kattegat. Thus, considerable pollution in sediments was indicated. In bivalves, the sums of 12 PAHs varied on a wet weight basis between 44 and 298 ug kg-1 (ww). The predominant PAHs were high molecular weight and the PAH profiles of M. balthica differed from those found in sediment from the same area. The PAHs were both pyrolytic and petrogenic in origin, and a contribution from diesel engines was found, which indicates pollution of the Baltic Sea, most likely caused by the steadily increasing shipping in the area. The HPLC methods developed for hepatic EROD activity and bile metabolite measurements proved to be fast and suitable for the study of biological effects. A mixed function oxygenase enzyme system in Baltic Sea perch collected from the Gulf of Finland was induced slightly: EROD activity in perch varied from 0.30 14 pmol min-1 mg-1 protein. This range can be considered to be comparable to background values. Recent PAH exposure was also indicated by enhanced levels (213 and 1149 ug kg-1) of the bile metabolite 1-hydroxypyrene. No correlation was indicated between hepatic EROD activity and concentration of 1-hydroxypyrene in bile. PCBs and OCPs were observed in Baltic Sea sediment, bivalves and herring. Sums of seven CBs in surface sediment (0 5 cm) ranged from 0.04 to 6.2 ug kg-1 (dw) and sums of three DDTs from 0.13 to 5.0 ug kg-1 (dw). The highest levels of contaminants were found in the most eastern area of the Gulf of Finland where the highest total carbon and nitrogen content was found and where the lowest percentage proportion of p,p -DDT was found. The highest concentrations of CBs and the lowest concentration of DDTs were found in M. balthica from the Gulf of Finland. The highest levels of DDTs were found in M. balthica from the Hanö Bight, which is the outer part of the Bornholm Basin close to the Swedish mainland. In bivalves, the sums of seven CBs were 72 108 ug kg-1 (lw) and the sums of three DDTs were 66 139 ug kg-1 (lw). Results from temporal trend monitoring showed, that during the period 1985 2002, the concentrations of seven CBs in two-year-old female Baltic herring were clearly decreased, from 9 16 to 2 6 ug kg-1 (ww) in the northern Baltic Sea. At the same time, concentrations of three DDTs declined from 8 15 to 1 5 ug kg-1 (ww). The total concentration of the fat-soluble CBs and DDTs in Baltic herring muscle was shown to be age-dependent; the average concentrations in ten-year-old Baltic herring were three to five-fold higher than in two-year-old herring. In Baltic herring and bivalves, as well as in surface sediments, CB 138 and CB153 were predominant among CBs, whereas among DDTs p,p'-DDD predominated in sediment and p,p'-DDE in bivalves and Baltic herring muscle. Baltic Sea sediments are potential sources of contaminants that may become available for bioaccumulation. Based on ecotoxicological assessment criteria, cause for concern regarding CBs in sediments was indicated for the Gulf of Finland and the northern Baltic Proper, and for the northern Baltic Sea regarding CBs in Baltic herring more than two years old. Statistical classification of selected organic contaminants indicated high-level contamination for p,p'-DDT, p,p'-DDD, p,p'-DDE, total DDTs, HCB, CB118 and CB153 in muscle of Baltic herring in age groups two to ten years; in contrast, concentrations of a-HCH and g-HCH were found to be moderate. The concentrations of DDTs and CBs in bivalves is sufficient to cause biological effects, and demonstrates that long-term biological effects are still possible in the case of DDTs in the Hanö Bight.
Resumo:
Emerging contaminants (ECs) are chemical compounds commonly present in water. It is only recently that this family of compounds is being recognized as significant water pollutants (. ECs include a wide variety of chemicals such as pharmaceutical and personal care products (PPCPs), pesticides, hydrocarbons and hormones, among others, that once released into the environment exert adverse impacts on the human and wildlife endocrine system. Natural attenuation and conventional treatment processes are not capable of removing these micro-pollutants detected in wastewater influent and effluent and surface and drinking water. The main challenges related with presence of ECs in stormwater in the context of reuse are: a) Development of suitable laboratory test methodologies and protocols for ECs identification and quantification b) Identification of the sources of ECs in the urban environment; c) Understanding their impacts on human and/or ecosystem health; and d). Development of cost-effective removal technologies which are appropriate for large as well as small-scale application.
Resumo:
This thesis deals with the response of biodegradation of selected anthropogenic organic contaminants and natural autochthonous organic matter to low temperature in boreal surface soils. Furthermore, the thesis describes activity, diversity and population size of autotrophic ammonia-oxidizing bacteria (AOB) in a boreal soil used for landfarming of oil-refinery wastes, and presents a new approach, in which the particular AOB were enriched and cultivated in situ from the landfarming soil onto cation exchange membranes. This thesis demonstrates that rhizosphere fraction of natural forest humus soil and agricultural clay loam soil from Helsinki Metropolitan area were capable of degrading of low to moderate concentrations (0.2 50 µg cm-3) of PCP, phenanthrene and 2,4,5-TCP at temperatures realistic to boreal climate (-2.5 to +15 °C). At the low temperatures, the biodegradation of PCP, phenanthrene and 2,4,5-TCP was more effective (Q10-values from 1.6 to 7.6) in the rhizosphere fraction of the forest soil than in the agricultural soil. Q10-values of endogenous soil respiration (carbon dioxide evolution) and selected hydrolytic enzyme activities (acetate-esterase, butyrate-esterase and β-glucosidase) in acid coniferous forest soil were 1.6 to 2.8 at temperatures from -3 to +30 °C. The results indicated that the temperature dependence of decomposition of natural autochthonous soil organic matter in the studied coniferous forest was only moderate. The numbers of AOB in the landfarming (sandy clay loam) soil were determined with quantitative polymerase chain reaction (real-time PCR) and with Most Probable Number (MPN) methods, and potential ammonium oxidation activity was measured with the chlorate inhibition technique. The results indicated presence of large and active AOB populations in the heavily oil-contaminated and urea-fertilised landfarming soil. Assessment of the populations of AOB with denaturing gradient gel electrophoresis (DGGE) profiling and sequence analysis of PCR-amplified 16S rRNA genes showed that Nitrosospira-like AOB in clusters 2 and 3 were predominant in the oily landfarming soil. This observation was supported by fluorescence in situ hybridization (FISH) analysis of the AOB grown on the soil-incubated cation-exchange membranes. The results of this thesis expand the suggested importance of Nitrosospira-like AOB in terrestrial environments to include chronically oil-contaminated soils.
Resumo:
Earlier studies have indicated that variability in size, surface texture and charge greatly influence the contaminant removal process in granular media. Based on surface characteristics of montmorillonite, it is anticipated that small addition of this clay would increase adhesion sites for bacterial growth and extracellular polymer production in the slow sand filter and thereby enhance its contaminant removal ability. Experiments were performed by permeating groundwater contaminated with pathogens (total coliform and E. Coli) and inorganic contaminants through the bentonite amended slow sand filter (BASSF). Surprisingly, the BASSF retained inorganic contaminants besides pathogens. Water-leach tests (pH of water leachate ranged from 2 to 9) with spent BASSF specimen indicated that the inorganic contaminants are irreversibly adsorbed to a large extent. It is considered that the combined effects of enhanced-organic matter mediated adhesion sites and increased hydraulic retention time enables the BASSF specimen to retain inorganic contaminants. It is envisaged that BASSF filters could find use in treating contaminated groundwater for potable needs at household and community level.
Resumo:
A conventional liner with a good performance against inorganic contaminants with a minimal hydraulic conductivity does not usually perform well for retention/removal of leachates containing organic contaminants. Organic modification of clay can render the naturally organophobic clay tobe organophilic. Incorporation of modified organo clay along with unmodified inorganic clay in liner systems can overcome the inherent incompatibility of conventional liners to organic contaminants and can increase organic sorption. The performance of commercially available organo clay and natural bentonite and mixtures of them in different pore fluids has been studied. It is found that the properties of mixtures improve with increase in organically modified clay particularly in non aqueous fluids from the considerations of liner application.