970 resultados para periodontal regeneration


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Type 2 diabetes and obesity are increasing worldwide and linked to periodontitis, a chronic disease which is characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium. The mechanisms underlying the association of diabetes mellitus and obesity with periodontal destruction and compromised periodontal healing are not well understood, but decreased plasma levels of adiponectin, as found in diabetic and obese individuals, might be a critical mechanistic link. The aim of this in vitro study was to examine the effects of adiponectin on periodontal ligament (PDL) cells under normal and regenerative conditions, and to study the regulation of adiponectin and its receptors in these cells. Adiponectin stimulated significantly the expression of growth factors and extracellular matrix, proliferation, and in vitro wound healing, reduced significantly the constitutive tumor necrosis factor-alpha expression, and caused a significant upregulation of its own expression. The beneficial actions of enamel matrix derivative on a number of PDL cell functions critical for periodontal regeneration were partially enhanced by adiponectin. The periodontopathogen Porphyromonas gingivalis inhibited the adiponectin expression and stimulated the expression of its receptors. In conclusion, reduced levels of adiponectin, as found in type 2 diabetes and obesity, may compromise periodontal health and healing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: The purpose of this study was to evaluate the effects of the platelet-rich plasma (PRP) when used in combination with autogenous bone graft and bioabsorbable membrane (Resolut® ) in the treatment of Class  III furcation defects in dogs. Material and method: Class III furcation defects (5 mm in height and in depth) were surgically created in the mandibular third premolars of five mongrel dogs. After nine weeks, the lesions were treated with scaling and root planning and each defect received one of the following treatments: autogenous bone graft + membrane (group C) or PRP + autogenous bone graft + membrane (group T). After a healing period of 90 days, the animals were sacrificed. Routine histological processing and staining with hematoxilyn and eosin and Masson trichrome were performed and a histomorphometric analysis determined the effect of the treatments on periodontal tissue regereneration. Data were analyzed by Hotelling’s T-squared (p < 0.05). Result: No statistically significant difference between C and T groups was observed by the histomorphometric analysis of the furcation area. Both treatment groups demonstrated similar regenerative results with the furcation defects partially filled and periodontal regeneration limited to the experimental notches of the lesions. (p > 0.05). Conclusion: According to the present results, PRP does not enhance the periodontal regeneration in class III furcation defects treated with autogenous bone graft and bioabsorbable membrane.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effects of the platelet-rich plasma (PRP) when used in combination with autogenous bone graft and bioabsorbable membrane (Resolut® ) in the treatment of Class  III furcation defects in dogs. Material and method: Class III furcation defects (5 mm in height and in depth) were surgically created in the mandibular third premolars of five mongrel dogs. After nine weeks, the lesions were treated with scaling and root planning and each defect received one of the following treatments: autogenous bone graft + membrane (group C) or PRP + autogenous bone graft + membrane (group T). After a healing period of 90 days, the animals were sacrificed. Routine histological processing and staining with hematoxilyn and eosin and Masson trichrome were performed and a histomorphometric analysis determined the effect of the treatments on periodontal tissue regereneration. Data were analyzed by Hotelling’s T-squared (p < 0.05). Result: No statistically significant difference between C and T groups was observed by the histomorphometric analysis of the furcation area. Both treatment groups demonstrated similar regenerative results with the furcation defects partially filled and periodontal regeneration limited to the experimental notches of the lesions. (p > 0.05). Conclusion: According to the present results, PRP does not enhance the periodontal regeneration in class III furcation defects treated with autogenous bone graft and bioabsorbable membrane.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Periodontal disease progress by destructive acute phases intercalated by reparative chronic phases. The aim of this study was to investigate the clinical and histological evidence of the periodontal disease reparative phase by analyzing bone wall conditions inside periodontal pockets and histologic images of periodontal pockets, identified in relevant publications. 81 patients with periodontitis, were randomly assigned into this study. Clinical and radiographic parameters were established to diagnose periodontal disease providing a sample of 133 diseased areas, which were treated by modified Widman flap. Documentation by digital photography were recorded in the surgery. Relevant publications showing histological images of periodontal pockets, were identified in Medline, PubMed and Google data base, were scanned and digitalized. All images obtained were evaluated and the presences of the reparative evidence in the zone around the underlying destroyed alveolar bone were critically analyzed. All periodontal bone defects, showed cortical bone reparations at different levels inside periodontal bone defects. All histologic images of periodontal pockets identified in relevant publications showed repaired gingival-attached connective tissue localized above underlying destroyed alveolar bone. All the evidences analyzed in this study suggested that periodontal disease is predominantly chronic, quiescent, showing reparative phases in different levels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A derivative (EMD) of enamel matrix proteins (EMPs) is used for periodontal regeneration because EMPs are believed to induce the formation of acellular extrinsic fiber cementum (AEFC). Other reports, however, indicate that EMPs have osteogenic potential. The aim of this study was to characterize the nature of the tissue that forms on the root surface following application of EMD. Ten human teeth affected by periodontitis and scheduled for extraction were treated with EMD. Four to six weeks later, they were extracted and processed for analysis by light microscopy and transmission electron microscopy. Immunocytochemistry with antibodies against bone sialoprotein (BSP) and osteopontin (OPN) was performed to determine the mineralization pattern. The newly formed tissues on the root were thick and contained embedded cells. Small mineralization foci were regularly seen, and large organic matrix patches were occasionally seen, but a distinct mineralization front was lacking. While labeling for BSP was always associated with small mineralization foci and large matrix patches, OPN labeling was seen inconsistently. It is concluded that tissues resembling either cellular intrinsic fiber cementum or a type of bone were observed. The mineralization pattern mostly resembled that found in bone, except for a few areas that exhibited a hitherto undescribed mineralization pattern.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVES The aim of the study was to clinically and histologically evaluate the healing of human intrabony defects treated with open flap surgery (OFD) and application of a new, resorbable, fully synthetic, unsintered, nanocrystalline, phase-pure hydroxyapatite (nano-HA). MATERIALS AND METHODS Six patients, each of them displaying very advanced intrabony defects around teeth scheduled for extraction due to advanced chronic periodontitis and further prosthodontic considerations, were included in the study. Following local anaesthesia, mucoperiosteal flaps were reflected; the granulation tissue was removed, and the roots were meticulously debrided by hand and ultrasonic instruments. A notch was placed at the most apical extent of the calculus present on the root surface or at the most apical part of the defect (if no calculus was present) in order to serve as a reference for the histological evaluation. Following defect fill with nano-HA, the flaps were sutured by means of mattress sutures to allow primary intention healing. At 7 months after regenerative surgery, the teeth were extracted together with some of their surrounding soft and hard tissues and processed for histological analysis. RESULTS The postoperative healing was uneventful in all cases. At 7 months following surgery, mean PPD reduction and mean CAL gain measured 4.0 ± 0.8 and 2.5 ± 0.8 mm, respectively. The histological analysis revealed a healing predominantly characterized by epithelial downgrowth. Limited formation of new cementum with inserting connective tissue fibers and bone regeneration occurred in three out of the six biopsies (i.e. 0-0.86 and 0-1.33 mm, respectively). Complete resorption of the nano-HA was found in four out of the six biopsies. A few remnants of the graft particles (either surrounded by newly formed mineralized tissue or encapsulated in connective tissue) were found in two out of the six biopsies. CONCLUSION Within their limits, the present results indicate that nano-HA has limited potential to promote periodontal regeneration in human intrabony defects. CLINICAL RELEVANCE The clinical outcomes obtained following surgery with OFD + nano-HA may not reflect true periodontal regeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE Catecholamines released from β-adrenergic neurons upon stress can interfere with periodontal regeneration. The cellular mechanisms, however, are unclear. Here, we assessed the effect of catecholamines on proliferation of periodontal fibroblasts. METHODS Fibroblasts from the gingiva and the periodontal ligament were exposed to agonists of the β-adrenergic receptors; isoproterenol (ISO, non-selective β-adrenergic agonist), salbutamol (SAL, selective β2-adrenergic receptor agonist) and BRL 37344 (BRL selective β3-receptor agonist). Proliferation was stimulated with platelet-derived growth factor-BB (PDGF-BB). Pharmacological inhibitors and gene expression analysis further revealed β-adrenergic signalling. RESULTS Gingiva and periodontal ligament fibroblast express the β2-adrenergic receptor. ISO and SAL but not BRL decreased proliferation of fibroblasts in the presence of PDGF-BB. The inhibitory effect of β-adrenergic signalling on proliferation but not protein synthesis in response to PDGF-BB was reduced by propranolol, a non-selective β-adrenergic antagonist. CONCLUSIONS These results suggest that β2-receptor agonists can reduce the mitogenic response of periodontal fibroblasts. These data add to the compelling concept that blocking of β2-receptor signalling can support tissue maintenance and regeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIMS The objective of this study is to evaluate the effects of a paste-like bone substitute material with easy handling properties and improved mechanical stability on periodontal regeneration of intrabony defects in dogs. MATERIALS AND METHODS Mandibular and maxillary first and third premolars were extracted, and three-wall intrabony defects were created on second and fourth premolars. After a healing period of 3 months, acute type defects were filled with a paste-like formulation of deproteinized bovine bone mineral (DBBM) (particle size, 0.125-0.25 mm) in a collagenous carrier matrix (T1), pulverized DBBM (particle size, 0.125-0.25 mm) without the carrier (T2), or Bio-Oss® granules (particle size, 0.25-1.00 mm) as control (C). All defects were covered with a Bio-Gide® membrane. The dogs were sacrificed after 12 weeks, and the specimens were analyzed histologically and histometrically. RESULTS Postoperative healing of all defects was uneventful, and no histological signs of inflammation were observed in the augmented and gingival regions. New cementum, new periodontal ligament, and new bone were observed in all three groups. The mean vertical bone gain was 3.26 mm (T1), 3.60 mm (T2), and 3.81 mm (C). That of new cementum was 2.25 mm (T1), 3.88 mm (T2), and 3.53 mm (C). The differences did not reach statistical significance. The DBBM particles were both incorporated in new bone and embedded in immature bone marrow. CONCLUSIONS The results of this preclinical study showed that the 0.125-0.25-mm DBBM particles in a powder or paste formulation resulted in periodontal regeneration comparable to the commercially available DBBM. Osteoconductivity, in particular, was not affected by DBBM size or paste formulation. CLINICAL RELEVANCE The improved handling properties of the paste-like bone substitute consisting of small DBBM particles embedded in a collagen-based carrier hold promise for clinical applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVES Recent studies suggest that a combination of enamel matrix derivative (EMD) with grafting material may improve periodontal wound healing/regeneration. Newly developed calcium phosphate (CaP) ceramics have been demonstrated a viable synthetic replacement option for bone grafting filler materials. AIMS This study aims to test the ability for EMD to adsorb to the surface of CaP particles and to determine the effect of EMD on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. MATERIALS AND METHODS EMD was adsorbed onto CaP particles and analyzed for protein adsorption patterns via scanning electron microscopy and high-resolution immunocytochemistry with an anti-EMD antibody. Cell attachment and cell proliferation were quantified using CellTiter 96 One Solution Cell Assay (MTS). Cell differentiation was analyzed using real-time PCR for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen1α1, and mineralization was assessed using alizarin red staining. RESULTS Analysis of cell attachment revealed significantly higher number of cells attached to EMD-adsorbed CaP particles when compared to control and blood-adsorbed samples. EMD also significantly increased cell proliferation at 3 and 5 days post-seeding. Moreover, there were significantly higher mRNA levels of osteoblast differentiation markers including collagen1α1, alkaline phosphatase, and osteocalcin in osteoblasts and PDL cells cultured on EMD-adsorbed CaP particles at various time points. CONCLUSION The present study suggests that the addition of EMD to CaP grafting particles may influence periodontal regeneration by stimulating PDL cell and osteoblast attachment, proliferation, and differentiation. Future in vivo and clinical studies are required to confirm these findings. CLINICAL RELEVANCE The combination of EMD and CaP may represent an option for regenerative periodontal therapy in advanced intrabony defects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND The use of prolyl hydroxylase inhibitors such as l-mimosine (L-MIM) and dimethyloxaloylglycine (DMOG) to improve angiogenesis is a new approach for periodontal regeneration. In addition to exhibiting pro-angiogenic effects, prolyl hydroxylase inhibitors can modulate the plasminogen activator system in cells from non-oral tissues. This study assesses the effect of prolyl hydroxylase inhibitors on plasminogen activation by fibroblasts from the periodontium. METHODS Gingival and periodontal ligament fibroblasts were incubated with L-MIM and DMOG. To investigate whether prolyl hydroxylase inhibitors modulate the net plasminogen activation, kinetic assays were performed with and without interleukin (IL)-1. Moreover, plasminogen activators and the respective inhibitors were analyzed by casein zymography, immune assays, and quantitative polymerase chain reaction. RESULTS The kinetic assay showed that L-MIM and DMOG reduced plasminogen activation under basal and IL-1-stimulated conditions. Casein zymography revealed that the effect of L-MIM involves a decrease in urokinase-type plasminogen activator activity. In agreement with these findings, reduced levels of urokinase-type plasminogen activator and elevated levels of plasminogen activator inhibitor 1 were observed. CONCLUSION L-MIM and DMOG can reduce plasminogen activation by fibroblasts from the gingiva and the periodontal ligament under basal conditions and in the presence of an inflammatory cytokine.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Type 2 diabetes and obesity are increasing worldwide and linked to periodontitis, a chronic disease which is characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium. The mechanisms underlying the association of diabetes mellitus and obesity with periodontal destruction and compromised periodontal healing are not well understood, but decreased plasma levels of adiponectin, as found in diabetic and obese individuals, might be a critical mechanistic link. The aim of this in vitro study was to examine the effects of adiponectin on periodontal ligament (PDL) cells under normal and regenerative conditions, and to study the regulation of adiponectin and its receptors in these cells. Adiponectin stimulated significantly the expression of growth factors and extracellular matrix, proliferation, and in vitro wound healing, reduced significantly the constitutive tumor necrosis factor-α expression, and caused a significant upregulation of its own expression. The beneficial actions of enamel matrix derivative on a number of PDL cell functions critical for periodontal regeneration were partially enhanced by adiponectin. The periodontopathogen Porphyromonas gingivalis inhibited the adiponectin expression and stimulated the expression of its receptors. In conclusion, reduced levels of adiponectin, as found in type 2 diabetes and obesity, may compromise periodontal health and healing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The goal of regenerative periodontal therapy is to completely restore the tooth's supporting apparatus that has been lost due to inflammatory periodontal disease or injury. It is characterized by formation of new cementum with inserting collagen fibers, new periodontal ligament, and new alveolar bone. Indeed conventional, nonsurgical, and surgical periodontal therapy usually result in clinical improvements evidenced by probing depth reduction and clinical attachment gain, but the healing occurs predominantly through formation of a long junctional epithelium and no or only unpredictable periodontal regeneration. Therefore, there is an ongoing search for new materials and improved surgical techniques, with the aim of predictably promoting periodontal wound healing/regeneration and improving the clinical outcome. This article attempts to provide the clinician with an overview of the most important biologic events involved in periodontal wound healing/ regeneration and on the criteria on how to select the appropriate regenerative material and surgical technique in order to optimize the clinical outcomes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIM The local delivery of growth factors via gene therapy has gained tremendous awareness in recent years due to their sustained growth factor delivery to target tissues. The aim of this study was to fabricate and investigate a scaffold able to release growth factors via gene therapy for the repair of periodontal tissues. MATERIALS AND METHODS Novel mesoporous bioglass (MBG)/silk fibrin scaffold combined with BMP7 and/or PDGF-B adenovirus was fabricated and tested in vitro for cell migration, proliferation and differentiation. Furthermore, acute-type buccal dehiscence periodontal defects (mesiodistal width × depth: 5 × 5 mm) were created on the buccal portion of the maxillary premolars in five normal male beagle dogs (12 months old, 15.0 ± 2.0 kg) and histologically examined for periodontal regeneration following implantation of the following five groups: (1) no scaffold, (2) MBG/silk scaffold alone, (3) scaffold + adPDGF-B, (4) scaffold + adBMP7, (5) scaffold + adPDGF-b + adBMP7. RESULTS In vitro findings demonstrated that adPDGF-B was able to rapidly recruit periodontal ligament (PDL) cells over sixfold more effectively than adBMP7, whereas adBMP7 was more able to induce osteoblast differentiation of PDL cells. In vivo findings demonstrate that scaffolds loaded with adPDGF-B were able to partially regenerate the periodontal ligament while adBMP7 scaffolds primarily improved new bone formation. The combination of both adPDGF-B and adBMP7 synergistically promoted periodontal regeneration by allowing up to two times greater regeneration of the periodontal ligament, alveolar bone and cementum when compared to each adenovirus used alone. CONCLUSIONS Although both PDGF-B and BMP7 are individually capable of promoting periodontal regeneration to some degree, their combination synergistically promotes wound healing in acute-type buccal dehiscence periodontal defects when delivered simultaneously. This study demonstrates the promise for successful delivery of low-cost, effective growth factor delivery via gene therapy for the treatment of periodontal defects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability to identify and manipulate stem cells has been a significant advancement in regenerative medicine and has contributed to the development of tissue engineering-based clinical therapies. Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques such as tissue engineering need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. One of the critical requirements for a tissue engineering approach is the delivery of ex vivo expanded progenitor populations or the mobilization of endogenous progenitor cells capable of proliferating and differentiating into the required tissues. By definition, stem cells fulfill these requirements and the recent identification of stem cells within the periodontal ligament represents a significant development in the progress toward predictable periodontal regeneration. In order to explore the importance of stem cells in periodontal wound healing and regeneration, this review will examine contemporary concepts in stem cell biology, the role of periodontal ligament progenitor cells in the regenerative process, recent developments in identifying periodontal stem cells and the clinical implications of these findings.