44 resultados para peptidomimetic
Resumo:
This thesis work deals, principally, with the development of different chemical protocols ranging from environmental sustainability peptide synthesis to asymmetric synthesis of modified tryptophans to a series of straightforward procedures for constraining peptide backbones without the need for a pre-formed scaffold. Much efforts have been dedicated to the structural analysis in a biomimetic environment, fundamental for predicting the in vivo conformation of compounds, as well as for giving a rationale to the experimentally determined bioactivity. The conformational analyses in solution has been done mostly by NMR (2D gCosy, Roesy, VT, titration experiments, molecular dynamics, etc.), FT-IR and ECD spectroscopy. As a practical application, 3D rigid scaffolds have been employed for the synthesis of biological active compounds based on peptidomimetic and retro-mimetic structures. These mimics have been investigated for their potential as antiflammatory agents and actually the results obtained are very promising. Moreover, the synthesis of Amo ring permitted the development of an alternative high effective synthetic pathway for obtaining Linezolid antibiotic. The final section is, instead, dedicated to the construction of a new biosensor based on zeolite L SAMs functionalized with the integrin ligand c[RGDfK], that has showed high efficiency for the selective detection of tumor cells. Such kind of sensor could, in fact, enable the convenient, non-invasive detection and diagnosis of cancer in early stages, from a few drops of a patient's blood or other biological fluids. In conclusion, the researches described herein demonstrate that the peptidomimetic approach to 3D definite structures, allows unambiguous investigation of the structure-activity relationships, giving an access to a wide range bioactive compounds of pharmaceutical interest to use not only as potential drugs but also for diagnostic and theranostic applications.
Comparative stability studies of poly(2-methyl-2-oxazoline) and poly(ethylene glycol) brush coatings
Resumo:
Non-fouling surfaces that resist non-specific adsorption of proteins, bacteria, and higher organisms are of particular interest in diverse applications ranging from marine coatings to diagnostic devices and biomedical implants. Poly(ethylene glycol) (PEG) is the most frequently used polymer to impart surfaces with such non-fouling properties. Nevertheless, limitations in PEG stability have stimulated research on alternative polymers that are potentially more stable than PEG. Among them, we previously investigated poly(2-methyl-2-oxazoline) (PMOXA), a peptidomimetic polymer, and found that PMOXA shows excellent anti-fouling properties. Here, we compare the stability of films self-assembled from graft copolymers exposing a dense brush layer of PEG and PMOXA side chains, respectively, in physiological and oxidative media. Before media exposure both film types prevented the adsorption of full serum proteins to below the detection limit of optical waveguide in situ measurements. Before and after media exposure for up to 2 weeks, the total film thickness, chemical composition, and total adsorbed mass of the films were quantified using variable angle spectroscopic ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), and optical waveguide lightmode spectroscopy (OWLS), respectively. We found (i) that PMOXA graft copolymer films were significantly more stable than PEG graft copolymer films and kept their protein-repellent properties under all investigated conditions and (ii) that film degradation was due to side chain degradation rather than due to copolymer desorption.
Resumo:
Mucetin (Trimeresurus mucrosquamatus venom activator, TMVA) is a potent platelet activator purified from Chinese habu (Trimeresurus mucrosquamatus) venom. It belongs to the snake venom heterodimeric C-type lectin family and exists in several multimeric forms. We now show that binding to platelet glycoprotein (GP) Ib is involved in mucetin-induced platelet aggregation. Antibodies against GPIb as well as the GPIb-blocking C-type lectin echicetin inhibited mucetin-induced platelet aggregation. Binding of GPIb was confirmed by affinity chromatography and Western blotting. Antibodies against GPVI inhibited convulxin- but not mucetin-induced aggregation. Signalling by mucetin involved rapid tyrosine phosphorylation of a number of proteins including Syk, Src, LAT and PLC gamma 2. Mucetin-induced phosphorylation of the Fc gamma chain of platelet was greatly promoted by inhibition of alpha(IIb)beta(3) by the peptidomimetic EMD 132338, suggesting that phosphatases downstream of alpha(IIb)beta(3) activation are involved in dephosphorylation of Fc gamma. Unlike other multimeric snake C-type lectins that act via GPIb and only agglutinate platelets, mucetin activates alpha(IIb)beta(3). Inhibition of alpha(IIb)beta(3) strongly reduced the aggregation response to mucetin, indicating that activation of alpha(IIb)beta(3) and binding of fibrinogen are involved in mucetin-induced platelet aggregation. Apyrase and aspirin also inhibit platelet aggregation induced by mucetin, suggesting that ADP and thromboxane A2 are involved in autocrine feedback. Sequence and structural comparison with closely related members of this protein family point to features that may be responsible for the functional differences.
Resumo:
The synthesis and biological evaluation of four peptidomimetic analogs of somatostatin based on a constrained Trp residue, 3-amino-indolo[2,3-c]azepin-2-one (Aia), are reported. It is shown that dipeptidomimetics with a D-Aia-Lys sequence, functionalized with N- and C-terminal aromatic substituents, display a good selectivity for both sst4 and sst5. This study allowed us to identify a new highly potent sst5 agonist with good selectivity over the other receptors, except versus sst4.
Resumo:
BACKGROUND Peptide transporters are membrane proteins that mediate the cellular uptake of di- and tripeptides, and of peptidomimetic drugs such as β-lactam antibiotics, antiviral drugs and antineoplastic agents. In spite of their high physiological and pharmaceutical importance, the molecular recognition by these transporters of the amino acid side chains of short peptides and thus the mechanisms for substrate binding and specificity are far from being understood. RESULTS The X-ray crystal structure of the peptide transporter YePEPT from the bacterium Yersinia enterocolitica together with functional studies have unveiled the molecular bases for recognition, binding and specificity of dipeptides with a charged amino acid residue at the N-terminal position. In wild-type YePEPT, the significant specificity for the dipeptides Asp-Ala and Glu-Ala is defined by electrostatic interaction between the in the structure identified positively charged Lys314 and the negatively charged amino acid side chain of these dipeptides. Mutagenesis of Lys314 into the negatively charged residue Glu allowed tuning of the substrate specificity of YePEPT for the positively charged dipeptide Lys-Ala. Importantly, molecular insights acquired from the prokaryotic peptide transporter YePEPT combined with mutagenesis and functional uptake studies with human PEPT1 expressed in Xenopus oocytes also allowed tuning of human PEPT1's substrate specificity, thus improving our understanding of substrate recognition and specificity of this physiologically and pharmaceutically important peptide transporter. CONCLUSION This study provides the molecular bases for recognition, binding and specificity of peptide transporters for dipeptides with a charged amino acid residue at the N-terminal position.
Resumo:
In epithelial/endothelial barriers, claudins form tight junctions, seal the paracellular cleft, and limit the uptake of solutes and drugs. The peptidomimetic C1C2 from the C-terminal half of claudin-1's first extracellular loop increases drug delivery through epithelial claudin-1 barriers. However, its molecular and structural mode of action remains unknown. In the present study, >100 μM C1C2 caused paracellular opening of various barriers with different claudin compositions, ranging from epithelial to endothelial cells, preferentially modulating claudin-1 and claudin-5. After 6 h incubation, C1C2 reversibly increased the permeability to molecules of different sizes; this was accompanied by redistribution of claudins and occludin from junctions to cytosol. Internalization of C1C2 in epithelial cells depended on claudin-1 expression and clathrin pathway, whereby most C1C2 was retained in recyclosomes >2 h. In freeze-fracture electron microscopy, C1C2 changed claudin-1 tight junction strands to a more parallel arrangement and claudin-5 strands from E-face to P-face association - drastic and novel effects. In conclusion, C1C2 is largely recycled in the presence of a claudin, which explains the delayed onset of barrier and junction loss, the high peptide concentration required and the long-lasting effect. Epithelial/endothelial barriers are specifically modulated via claudin-1/claudin-5, which can be targeted to improve drug delivery.
Resumo:
Ras CAAX (C = cysteine, A = aliphatic amino acid, and X = any amino acid) peptidomimetic inhibitors of farnesyl protein transferase suppress Ras-dependent cell transformation by preventing farnesylation of the Ras oncoprotein. These compounds are potential anticancer agents for tumors associated with Ras mutations. The peptidomimetic FTI-254 was tested for Ras1-inhibiting activity in whole animals by injection of activated Ras1val12 Drosophila larvae. FTI-254 decreased the ability of Ras1val12 to form supernumerary R7 photoreceptor cells in the compound eye of transformed flies. In contrast, it had no effect on the related supernumerary R7 phenotypes of flies transformed with either the activated sevenless receptor tyrosine kinase, Raf kinase, or a chimeric Ras1val12 protein that is membrane associated through myristylation instead of isoprenylation. Therefore, FTI-254 acts as an isoprenylation inhibitor to selectively inhibit Ras1val12 signaling activity in a whole-animal model system.
Resumo:
Examination of the structural basis for antiviral activity, oral pharmacokinetics, and hepatic metabolism among a series of symmetry-based inhibitors of the human immunodeficiency virus (HIV) protease led to the discovery of ABT-538, a promising experimental drug for the therapeutic intervention in acquired immunodeficiency syndrome (AIDS). ABT-538 exhibited potent in vitro activity against laboratory and clinical strains of HIV-1 [50% effective concentration (EC50) = 0.022-0.13 microM] and HIV-2 (EC50 = 0.16 microM). Following a single 10-mg/kg oral dose, plasma concentrations in rat, dog, and monkey exceeded the in vitro antiviral EC50 for > 12 h. In human trials, a single 400-mg dose of ABT-538 displayed a prolonged absorption profile and achieved a peak plasma concentration in excess of 5 micrograms/ml. These findings demonstrate that high oral bioavailability can be achieved in humans with peptidomimetic inhibitors of HIV protease.
Resumo:
Cyclic peptides containing oxazole and thiazole heterocycles have been examined for their capacity to be used as scaffolds in larger, more complex, protein-like structures. Both the macrocyclic scaffolds and the supramolecular structures derived therefrom have been visualised by molecular modelling techniques. These molecules are too symmetrical to examine structurally by NMR spectroscopy. The cyclic hexapeptide ([Aaa-Thz](3), [Aaa-Oxz](3)) and cyclic octapeptide ([Aaa-Thz](4), [Aaa-Oxz](4)) analogues are composed of dipeptide surrogates (Aaa: amino acid, Thz: thiazole, Oxz: oxazole) derived from intramolecular condensation of cysteine or serine/threonine side chains in dipeptides like Aaa-Cys, Aaa-Ser and Aaa-Thr. The five-membered heterocyclic rings, like thiazole, oxazole and reduced analogues like thiazoline, thiazolidine and oxazoline have profound influences on the structures and bioactivities of cyclic peptides derived therefrom. This work suggests that such constrained cyclic peptides can be used as scaffolds to create a range of novel protein-like supramolecular structures (e.g. cylinders, troughs, cones, multi-loop structures, helix bundles) that are comparable in size, shape and composition to bioactive surfaces of proteins. They may therefore represent interesting starting points for the design of novel artificial proteins and artificial enzymes. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Relatively few cyclic peptides have reached the pharmaceutical marketplace during the past decade, most produced through fermentation rather than made synthetically. Generally, this class of compounds is synthesized for research purposes on milligram scales by solid-phase methods, but if the potential of macrocyclic peptidomimetics is to be realized, low-cost larger scale solution-phase syntheses need to be devised and optimized to provide sufficient quantities for preclinical, clinical, and commercial uses. Here, we describe a cheap, medium-scale, solution-phase synthesis of the first reported highly potent, selective, and orally active antagonist of the human C5a receptor. This compound, Ac-Phe[Orn-Pro-D-Cha-Trp-Arg], known as 3D53, is a macrocyclic peptidomimetic of the human plasma protein C5a and displays excellent antiinflammatory activity in numerous animal models of human disease. In a convergent approach, two tripeptide fragments Ac-Phe-Orn-(Boc)-Pro-OH and H-D-Cha-Trp(For)-Arg-OEt were first prepared by high-yielding solution-phase couplings using a mixed anhydride method before coupling them to give a linear hexapeptide which, after deprotection, was obtained in 38% overall yield from the commercially available amino acids. Cyclization in solution using BOP reagent gave the antagonist in 33% yield (13% overall) after HPLC purification. Significant features of the synthesis were that the Arg side chain was left unprotected throughout, the component Boe-D-Cha-OH was obtained very efficiently via hydrogenation Of D-Phe with PtO2 in TFA/water, the tripeptides were coupled at the Pro-Cha junction to minimize racemization via the oxazolone pathway, and the entire synthesis was carried out without purification of any intermediates. The target cyclic product was purified (>97%) by reversed-phase HPLC. This convergent synthesis with minimal use of protecting groups allowed batches of 50100 g to be prepared efficiently in high yield using standard laboratory equipment. This type of procedure should be useful for making even larger quantities of this and other macrocyclic peptidomimetic drugs.
Resumo:
A major problem in de novo design of enzyme inhibitors is the unpredictability of the induced fit, with the shape of both ligand and enzyme changing cooperatively and unpredictably in response to subtle structural changes within a ligand. We have investigated the possibility of dampening the induced fit by using a constrained template as a replacement for adjoining segments of a ligand. The template preorganizes the ligand structure, thereby organizing the local enzyme environment. To test this approach, we used templates consisting of constrained cyclic tripeptides, formed through side chain to main chain linkages, as structural mimics of the protease-bound extended beta-strand conformation of three adjoining amino acid residues at the N- or C-terminal sides of the scissile bond of substrates. The macrocyclic templates were derivatized to a range of 30 structurally diverse molecules via focused combinatorial variation of nonpeptidic appendages incorporating a hydroxyethylamine transition-state isostere. Most compounds in the library were potent inhibitors of the test protease (HIV-1 protease). Comparison of crystal structures for five protease-inhibitor complexes containing an N-terminal macrocycle and three protease-inhibitor complexes containing a C-terminal macrocycle establishes that the macrocycles fix their surrounding enzyme environment, thereby permitting independent variation of acyclic inhibitor components with only local disturbances to the protease. In this way, the location in the protease of various acyclic fragments on either side of the macrocyclic template can be accurately predicted. This type of templating strategy minimizes the problem of induced fit, reducing unpredictable cooperative effects in one inhibitor region caused by changes to adjacent enzyme-inhibitor interactions. This idea might be exploited in template-based approaches to inhibitors of other proteases, where a beta-strand mimetic is also required for recognition, and also other protein-binding ligands where different templates may be more appropriate.
Resumo:
Importin-alpha is the nuclear import receptor that recognizes cargo proteins with nuclear localization sequences (NLSs). Tile study of NLS peptidomimetics can provide a better understanding of the requirements for the molecular recognition of cargo proteins by importin-alpha, and potentially engender a large number of applications in medicine. Importin-a was crystallized with a set of six NLS peptidomimetics, and X-ray diffraction data were collected in the range 2.1-2.5 angstrom resolution. Preliminary electron density calculations show that the ligands are present in the crystals. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
An uptake system was developed using Caco-2 cell monolayers and the dipeptide, glycyl-[3H]L-proline, as a probe compound. Glycyl-[3H]L-proline uptake was via the di-/tripeptide transport system (DTS) and, exhibited concentration-, pH- and temperature-dependency. Dipeptides inhibited uptake of the probe, and the design of the system allowed competitors to be ranked against one another with respect to affinity for the transporter. The structural features required to ensure or increase interaction with the DTS were defined by studying the effect of a series of glycyl-L-proline and angiotensin-converting enzyme (ACE)-inhibitor (SQ-29852) analogues on the uptake of the probe. The SQ-29852 structure was divided into six domains (A-F) and competitors were grouped into series depending on structural variations within specific regions. Domain A was found to prefer a hydrophobic function, such as a phenyl group, and was intolerant to positive charges and H+ -acceptors and donors. SQ-29852 analogues were more tolerant of substitutions in the C domain, compared to glycyl-L-proline analogues, suggesting that interactions along the length of the SQ-29852 molecule may override the effects of substitutions in the C domain. SQ-29852 analogues showed a preference for a positive function, such as an amine group in this region, but dipeptide structures favoured an uncharged substitution. Lipophilic substituents in domain D increased affinity of SQ-29852 analogues with the DTS. A similar effect was observed for ACE-NEP inhibitor analogues. Domain E, corresponding to the carboxyl group was found to be tolerant of esterification for SQ-29852 analogues but not for dipeptides. Structural features which may increase interaction for one series of compounds, may not have the same effect for another series, indicating that the presence of multiple recognition sites on a molecule may override the deleterious effect of anyone change. Modifying current, poorly absorbed peptidomimetic structures to fit the proposed hypothetical model may improve oral bioavailability by increasing affinity for the DTS. The stereochemical preference of the transporter was explored using four series of compounds (SQ-29852, lysylproline, alanylproline and alanylalanine enantiomers). The L, L stereochemistry was the preferred conformation for all four series, agreeing with previous studies. However, D, D enantiomers were shown in some cases to be substrates for the DTS, although exhibiting a lower affinity than their L, L counterparts. All the ACE-inhibitors and β-lactam antibiotics investigated, produced a degree of inhibition of the probe, and thus show some affinity for the DTS. This contrasts with previous reports that found several ACE inhibitors to be absorbed via a passive process, thus suggesting that compounds are capable of binding to the transporter site and inhibiting the probe without being translocated into the cell. This was also shown to be the case for oligodeoxynucleotide conjugated to a lipophilic group (vitamin E), and highlights the possibility that other orally administered drug candidates may exert non-specific effects on the DTS and possibly have a nutritional impact. Molecular modelling of selected ACE-NEP inhibitors revealed that the three carbonyl functions can be oriented in a similar direction, and this conformation was found to exist in a local energy-minimised state, indicating that the carbonyls may possibly be involved in hydrogen-bond formation with the binding site of the DTS.
Resumo:
Potent-selective peptidomimetic inhibitors of tissue transglutaminase (TG2) were developed through a combination of protein-ligand docking and molecular dynamic techniques. Derivatives of these inhibitors were made with the aim of specific TG2 targeting to the intra- and extracellular space. A cell-permeable fluorescently labeled derivative enabled detection of in situ cellular TG2 activity in human umbilical cord endothelial cells and TG2-transduced NIH3T3 cells, which could be enhanced by treatment of cells with ionomycin. Reaction of TG2 with this fluorescent inhibitor in NIH3T3 cells resulted in loss of binding of TG2 to cell surface syndecan-4 and inhibition of translocation of the enzyme into the extracellular matrix, with a parallel reduction in fibronectin deposition. In human umbilical cord endothelial cells, this same fluorescent inhibitor also demonstrated a reduction in fibronectin deposition, cell motility, and cord formation in Matrigel. Use of the same inhibitor in a mouse model of hypertensive nephrosclerosis showed over a 40% reduction in collagen deposition.