816 resultados para penalty-based aggregation functions
Resumo:
WDM multilayered SiC/Si devices based on a-Si:H and a-SiC:H filter design are approached from a reconfigurable point of view. Results show that the devices, under appropriated optical bias, act as reconfigurable active filters that allow optical switching and optoelectronic logic functions development. Under front violet irradiation the magnitude of the red and green channels are amplified and the blue and violet reduced. Violet back irradiation cuts the red channel, slightly influences the magnitude of the green and blue ones and strongly amplifies de violet channel. This nonlinearity provides the possibility for selective removal of useless wavelengths. Particular attention is given to the amplification coefficient weights, which allow taking into account the wavelength background effects when a band needs to be filtered from a wider range of mixed signals, or when optical active filter gates are used to select and filter input signals to specific output ports in WDM communication systems. A truth table of an encoder that performs 8-to-1 multiplexer (MUX) function is presented.
Resumo:
Penalty and Barrier methods are normally used to solve Nonlinear Optimization Problems constrained problems. The problems appear in areas such as engineering and are often characterised by the fact that involved functions (objective and constraints) are non-smooth and/or their derivatives are not know. This means that optimization methods based on derivatives cannot net used. A Java based API was implemented, including only derivative-free optimizationmethods, to solve both constrained and unconstrained problems, which includes Penalty and Barriers methods. In this work a new penalty function, based on Fuzzy Logic, is presented. This function imposes a progressive penalization to solutions that violate the constraints. This means that the function imposes a low penalization when the violation of the constraints is low and a heavy penalisation when the violation is high. The value of the penalization is not known in beforehand, it is the outcome of a fuzzy inference engine. Numerical results comparing the proposed function with two of the classic penalty/barrier functions are presented. Regarding the presented results one can conclude that the prosed penalty function besides being very robust also exhibits a very good performance.
Resumo:
In this paper we address the problem of computing multiple roots of a system of nonlinear equations through the global optimization of an appropriate merit function. The search procedure for a global minimizer of the merit function is carried out by a metaheuristic, known as harmony search, which does not require any derivative information. The multiple roots of the system are sequentially determined along several iterations of a single run, where the merit function is accordingly modified by penalty terms that aim to create repulsion areas around previously computed minimizers. A repulsion algorithm based on a multiplicative kind penalty function is proposed. Preliminary numerical experiments with a benchmark set of problems show the effectiveness of the proposed method.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
The occurrence of negative values for Fukui functions was studied through the electronegativity equalization method. Using algebraic relations between Fukui functions and different other conceptual DFT quantities on the one hand and the hardness matrix on the other hand, expressions were obtained for Fukui functions for several archetypical small molecules. Based on EEM calculations for large molecular sets, no negative Fukui functions were found
Resumo:
Agent-based computational economics is becoming widely used in practice. This paperexplores the consistency of some of its standard techniques. We focus in particular on prevailingwholesale electricity trading simulation methods. We include different supply and demandrepresentations and propose the Experience-Weighted Attractions method to include severalbehavioural algorithms. We compare the results across assumptions and to economic theorypredictions. The match is good under best-response and reinforcement learning but not underfictitious play. The simulations perform well under flat and upward-slopping supply bidding,and also for plausible demand elasticity assumptions. Learning is influenced by the number ofbids per plant and the initial conditions. The overall conclusion is that agent-based simulationassumptions are far from innocuous. We link their performance to underlying features, andidentify those that are better suited to model wholesale electricity markets.
Resumo:
A Wiener system is a linear time-invariant filter, followed by an invertible nonlinear distortion. Assuming that the input signal is an independent and identically distributed (iid) sequence, we propose an algorithm for estimating the input signal only by observing the output of the Wiener system. The algorithm is based on minimizing the mutual information of the output samples, by means of a steepest descent gradient approach.
Resumo:
The thesis studies role based access control and its suitability in the enterprise environment. The aim is to research how extensively role based access control can be implemented in the case organization and how it support organization’s business and IT functions. This study points out the enterprise’s needs for access control, factors of access control in the enterprise environment and requirements for implementation and the benefits and challenges it brings along. To find the scope how extensively role based access control can be implemented into the case organization, firstly is examined the actual state of access control. Secondly is defined a rudimentary desired state (how things should be) and thirdly completed it by using the results of the implementation of role based access control application. The study results the role model for case organization unit, and the building blocks and the framework for the organization wide implementation. Ultimate value for organization is delivered by facilitating the normal operations of the organization whilst protecting its information assets.
Resumo:
A new family of distortion risk measures -GlueVaR- is proposed in Belles- Sampera et al. -2013- to procure a risk assessment lying between those provided by common quantile-based risk measures. GlueVaR risk measures may be expressed as a combination of these standard risk measures. We show here that this relationship may be used to obtain approximations of GlueVaR measures for general skewed distribution functions using the Cornish-Fisher expansion. A subfamily of GlueVaR measures satisfies the tail-subadditivity property. An example of risk measurement based on real insurance claim data is presented, where implications of tail-subadditivity in the aggregation of risks are illustrated.
Resumo:
In the network era, creative achievements like innovations are more and more often created in interaction among different actors. The complexity of today‘s problems transcends the individual human mind, requiring not only individual but also collective creativity. In collective creativity, it is impossible to trace the source of new ideas to an individual. Instead, creative activity emerges from the collaboration and contribution of many individuals, thereby blurring the contribution of specific individuals in creating ideas. Collective creativity is often associated with diversity of knowledge, skills, experiences and perspectives. Collaboration between diverse actors thus triggers creativity and gives possibilities for collective creativity. This dissertation investigates collective creativity in the context of practice-based innovation. Practice-based innovation processes are triggered by problem setting in a practical context and conducted in non-linear processes utilising scientific and practical knowledge production and creation in cross-disciplinary innovation networks. In these networks diversity or distances between innovation actors are essential. Innovation potential may be found in exploiting different kinds of distances. This dissertation presents different kinds of distances, such as cognitive, functional and organisational which could be considered as sources of creativity and thus innovation. However, formation and functioning of these kinds of innovation networks can be problematic. Distances between innovating actors may be so great that a special interpretation function is needed – that is, brokerage. This dissertation defines factors that enhance collective creativity in practice-based innovation and especially in the fuzzy front end phase of innovation processes. The first objective of this dissertation is to study individual and collective creativity at the employee level and identify those factors that support individual and collective creativity in the organisation. The second objective is to study how organisations use external knowledge to support collective creativity in their innovation processes in open multi-actor innovation. The third objective is to define how brokerage functions create possibilities for collective creativity especially in the context of practice-based innovation. The research objectives have been studied through five substudies using a case-study strategy. Each substudy highlights various aspects of creativity and collective creativity. The empirical data consist of materials from innovation projects arranged in the Lahti region, Finland, or materials from the development of innovation methods in the Lahti region. The Lahti region has been chosen as the research context because the innovation policy of the region emphasises especially the promotion of practice-based innovations. The results of this dissertation indicate that all possibilities of collective creativity are not utilised in internal operations of organisations. The dissertation introduces several factors that could support collective creativity in organisations. However, creativity as a social construct is understood and experienced differently in different organisations, and these differences should be taken into account when supporting creativity in organisations. The increasing complexity of most potential innovations requires collaborative creative efforts that often exceed the boundaries of the organisation and call for the involvement of external expertise. In practice-based innovation different distances are considered as sources of creativity. This dissertation gives practical implications on how it is possible to exploit different kinds of distances knowingly. It underlines especially the importance of brokerage functions in open, practice-based innovation in order to create possibilities for collective creativity. As a contribution of this dissertation, a model of brokerage functions in practice-based innovation is formulated. According to the model, the results and success of brokerage functions are based on the context of brokerage as well as the roles, tasks, skills and capabilities of brokers. The brokerage functions in practice-based innovation are also possible to divide into social and cognitive brokerage.
Resumo:
The question of the trainability of executive functions and the impact of such training on related cognitive skills has stirred considerable research interest. Despite a number of studies investigating this, the question has not yet been solved. The general aim of this thesis was to investigate two very different types of training of executive functions: laboratory-based computerized training (Studies I-III) and realworld training through bilingualism (Studies IV-V). Bilingualism as a kind of training of executive functions is based on the idea that managing two languages requires executive resources, and previous studies have suggested a bilingual advantage in executive functions. Three executive functions were studied in the present thesis: updating of working memory (WM) contents, inhibition of irrelevant information, and shifting between tasks and mental sets. Studies I-III investigated the effects of computer-based training of WM updating (Study I), inhibition (Study II), and set shifting (Study III) in healthy young adults. All studies showed increased performance on the trained task. More importantly, improvement on an untrained task tapping the trained executive function (near transfer) was seen in Study I and II. None of the three studies showed improvement on untrained tasks tapping some other cognitive function (far transfer) as a result of training. Study I also used PET to investigate the effects of WM updating training on a neurotransmitter closely linked to WM, namely dopamine. The PET results revealed increased striatal dopamine release during WM updating performance as a result of training. Study IV investigated the ability to inhibit task-irrelevant stimuli in bilinguals and monolinguals by using a dichotic listening task. The results showed that the bilinguals exceeded the monolinguals in inhibiting task-irrelevant information. Study V introduced a new, complementary research approach to study the bilingual executive advantage and its underlying mechanisms. To circumvent the methodological problems related to natural groups design, this approach focuses only on bilinguals and examines whether individual differences in bilingual behavior correlate with executive task performances. Using measures that tap the three above-entioned executive functions, the results suggested that more frequent language switching was associated with better set shifting skills, and earlier acquisition of the second language was related to better inhibition skills. In conclusion, the present behavioral results showed that computer-based training of executive functions can improve performance on the trained task and on closely related tasks, but does not yield a more general improvement of cognitive skills. Moreover, the functional neuroimaging results reveal that WM training modulates striatal dopaminergic function, speaking for training-induced neural plasticity in this important neurotransmitter system. With regard to bilingualism, the results provide further support to the idea that bilingualism can enhance executive functions. In addition, the new complementary research approach proposed here provides some clues as to which aspects of everyday bilingual behavior may be related to the advantage in executive functions in bilingual individuals.
Resumo:
The objective of this thesis is to develop and generalize further the differential evolution based data classification method. For many years, evolutionary algorithms have been successfully applied to many classification tasks. Evolution algorithms are population based, stochastic search algorithms that mimic natural selection and genetics. Differential evolution is an evolutionary algorithm that has gained popularity because of its simplicity and good observed performance. In this thesis a differential evolution classifier with pool of distances is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, to determine the optimal values for all free parameters of the classifier model during the training phase of the classifier. The differential evolution classifier applies the individually optimized distance measure for each new data set to be classified is generalized to cover a pool of distances. Instead of optimizing a single distance measure for the given data set, the selection of the optimal distance measure from a predefined pool of alternative measures is attempted systematically and automatically. Furthermore, instead of only selecting the optimal distance measure from a set of alternatives, an attempt is made to optimize the values of the possible control parameters related with the selected distance measure. Specifically, a pool of alternative distance measures is first created and then the differential evolution algorithm is applied to select the optimal distance measure that yields the highest classification accuracy with the current data. After determining the optimal distance measures for the given data set together with their optimal parameters, all determined distance measures are aggregated to form a single total distance measure. The total distance measure is applied to the final classification decisions. The actual classification process is still based on the nearest prototype vector principle; a sample belongs to the class represented by the nearest prototype vector when measured with the optimized total distance measure. During the training process the differential evolution algorithm determines the optimal class vectors, selects optimal distance metrics, and determines the optimal values for the free parameters of each selected distance measure. The results obtained with the above method confirm that the choice of distance measure is one of the most crucial factors for obtaining higher classification accuracy. The results also demonstrate that it is possible to build a classifier that is able to select the optimal distance measure for the given data set automatically and systematically. After finding optimal distance measures together with optimal parameters from the particular distance measure results are then aggregated to form a total distance, which will be used to form the deviation between the class vectors and samples and thus classify the samples. This thesis also discusses two types of aggregation operators, namely, ordered weighted averaging (OWA) based multi-distances and generalized ordered weighted averaging (GOWA). These aggregation operators were applied in this work to the aggregation of the normalized distance values. The results demonstrate that a proper combination of aggregation operator and weight generation scheme play an important role in obtaining good classification accuracy. The main outcomes of the work are the six new generalized versions of previous method called differential evolution classifier. All these DE classifier demonstrated good results in the classification tasks.
Resumo:
The occurrence of negative values for Fukui functions was studied through the electronegativity equalization method. Using algebraic relations between Fukui functions and different other conceptual DFT quantities on the one hand and the hardness matrix on the other hand, expressions were obtained for Fukui functions for several archetypical small molecules. Based on EEM calculations for large molecular sets, no negative Fukui functions were found