880 resultados para penalty function method
Resumo:
In this brief, a hybrid filter algorithm is developed to deal with the state estimation (SE) problem for power systems by taking into account the impact from the phasor measurement units (PMUs). Our aim is to include PMU measurements when designing the dynamic state estimators for power systems with traditional measurements. Also, as data dropouts inevitably occur in the transmission channels of traditional measurements from the meters to the control center, the missing measurement phenomenon is also tackled in the state estimator design. In the framework of extended Kalman filter (EKF) algorithm, the PMU measurements are treated as inequality constraints on the states with the aid of the statistical criterion, and then the addressed SE problem becomes a constrained optimization one based on the probability-maximization method. The resulting constrained optimization problem is then solved using the particle swarm optimization algorithm together with the penalty function approach. The proposed algorithm is applied to estimate the states of the power systems with both traditional and PMU measurements in the presence of probabilistic data missing phenomenon. Extensive simulations are carried out on the IEEE 14-bus test system and it is shown that the proposed algorithm gives much improved estimation performances over the traditional EKF method.
Resumo:
Thesis (Ph.D.)--University of Washington, 2015
Resumo:
In real optimization problems, usually the analytical expression of the objective function is not known, nor its derivatives, or they are complex. In these cases it becomes essential to use optimization methods where the calculation of the derivatives, or the verification of their existence, is not necessary: the Direct Search Methods or Derivative-free Methods are one solution. When the problem has constraints, penalty functions are often used. Unfortunately the choice of the penalty parameters is, frequently, very difficult, because most strategies for choosing it are heuristics strategies. As an alternative to penalty function appeared the filter methods. A filter algorithm introduces a function that aggregates the constrained violations and constructs a biobjective problem. In this problem the step is accepted if it either reduces the objective function or the constrained violation. This implies that the filter methods are less parameter dependent than a penalty function. In this work, we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of the simplex method and filter methods. This method does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. The basic idea of simplex filter algorithm is to construct an initial simplex and use the simplex to drive the search. We illustrate the behavior of our algorithm through some examples. The proposed methods were implemented in Java.
Resumo:
This paper analyzes the dynamical properties of systems with backlash and impact phenomena based on the describing function method. It is shown that this type of nonlinearity can be analyzed in the perspective of the fractional calculus theory. The fractional dynamics is compared with that of standard models.
Resumo:
In this paper we address the problem of computing multiple roots of a system of nonlinear equations through the global optimization of an appropriate merit function. The search procedure for a global minimizer of the merit function is carried out by a metaheuristic, known as harmony search, which does not require any derivative information. The multiple roots of the system are sequentially determined along several iterations of a single run, where the merit function is accordingly modified by penalty terms that aim to create repulsion areas around previously computed minimizers. A repulsion algorithm based on a multiplicative kind penalty function is proposed. Preliminary numerical experiments with a benchmark set of problems show the effectiveness of the proposed method.
Resumo:
On présente une nouvelle approche de simulation pour la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine, pour des modèles de risque déterminés par des subordinateurs de Lévy. Cette approche s'inspire de la décomposition "Ladder height" pour la probabilité de ruine dans le Modèle Classique. Ce modèle, déterminé par un processus de Poisson composé, est un cas particulier du modèle plus général déterminé par un subordinateur, pour lequel la décomposition "Ladder height" de la probabilité de ruine s'applique aussi. La Fonction de Pénalité Escomptée, encore appelée Fonction Gerber-Shiu (Fonction GS), a apporté une approche unificatrice dans l'étude des quantités liées à l'événement de la ruine été introduite. La probabilité de ruine et la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine sont des cas particuliers de la Fonction GS. On retrouve, dans la littérature, des expressions pour exprimer ces deux quantités, mais elles sont difficilement exploitables de par leurs formes de séries infinies de convolutions sans formes analytiques fermées. Cependant, puisqu'elles sont dérivées de la Fonction GS, les expressions pour les deux quantités partagent une certaine ressemblance qui nous permet de nous inspirer de la décomposition "Ladder height" de la probabilité de ruine pour dériver une approche de simulation pour cette fonction de densité conjointe. On présente une introduction détaillée des modèles de risque que nous étudions dans ce mémoire et pour lesquels il est possible de réaliser la simulation. Afin de motiver ce travail, on introduit brièvement le vaste domaine des mesures de risque, afin d'en calculer quelques unes pour ces modèles de risque. Ce travail contribue à une meilleure compréhension du comportement des modèles de risques déterminés par des subordinateurs face à l'éventualité de la ruine, puisqu'il apporte un point de vue numérique absent de la littérature.
Resumo:
We compute the partition function of an anyon-like harmonic oscillator. The well known results for both the bosonic and fermionic oscillators are then re-obtained as particular cases of our function. The technique we employ is a non-relativistic version of the Green function method used in the computation of one-loop effective actions of quantum field theory.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
La evaluación de la seguridad de estructuras antiguas de fábrica es un problema abierto.El material es heterogéneo y anisótropo, el estado previo de tensiones difícil de conocer y las condiciones de contorno inciertas. A comienzos de los años 50 se demostró que el análisis límite era aplicable a este tipo de estructuras, considerándose desde entonces como una herramienta adecuada. En los casos en los que no se produce deslizamiento la aplicación de los teoremas del análisis límite estándar constituye una herramienta formidable por su simplicidad y robustez. No es necesario conocer el estado real de tensiones. Basta con encontrar cualquier solución de equilibrio, y que satisfaga las condiciones de límite del material, en la seguridad de que su carga será igual o inferior a la carga real de inicio de colapso. Además esta carga de inicio de colapso es única (teorema de la unicidad) y se puede obtener como el óptimo de uno cualquiera entre un par de programas matemáticos convexos duales. Sin embargo, cuando puedan existir mecanismos de inicio de colapso que impliquen deslizamientos, cualquier solución debe satisfacer tanto las restricciones estáticas como las cinemáticas, así como un tipo especial de restricciones disyuntivas que ligan las anteriores y que pueden plantearse como de complementariedad. En este último caso no está asegurada la existencia de una solución única, por lo que es necesaria la búsqueda de otros métodos para tratar la incertidumbre asociada a su multiplicidad. En los últimos años, la investigación se ha centrado en la búsqueda de un mínimo absoluto por debajo del cual el colapso sea imposible. Este método es fácil de plantear desde el punto de vista matemático, pero intratable computacionalmente, debido a las restricciones de complementariedad 0 y z 0 que no son ni convexas ni suaves. El problema de decisión resultante es de complejidad computacional No determinista Polinomial (NP)- completo y el problema de optimización global NP-difícil. A pesar de ello, obtener una solución (sin garantía de exito) es un problema asequible. La presente tesis propone resolver el problema mediante Programación Lineal Secuencial, aprovechando las especiales características de las restricciones de complementariedad, que escritas en forma bilineal son del tipo y z = 0; y 0; z 0 , y aprovechando que el error de complementariedad (en forma bilineal) es una función de penalización exacta. Pero cuando se trata de encontrar la peor solución, el problema de optimización global equivalente es intratable (NP-difícil). Además, en tanto no se demuestre la existencia de un principio de máximo o mínimo, existe la duda de que el esfuerzo empleado en aproximar este mínimo esté justificado. En el capítulo 5, se propone hallar la distribución de frecuencias del factor de carga, para todas las soluciones de inicio de colapso posibles, sobre un sencillo ejemplo. Para ello, se realiza un muestreo de soluciones mediante el método de Monte Carlo, utilizando como contraste un método exacto de computación de politopos. El objetivo final es plantear hasta que punto está justificada la busqueda del mínimo absoluto y proponer un método alternativo de evaluación de la seguridad basado en probabilidades. Las distribuciones de frecuencias, de los factores de carga correspondientes a las soluciones de inicio de colapso obtenidas para el caso estudiado, muestran que tanto el valor máximo como el mínimo de los factores de carga son muy infrecuentes, y tanto más, cuanto más perfecto y contínuo es el contacto. Los resultados obtenidos confirman el interés de desarrollar nuevos métodos probabilistas. En el capítulo 6, se propone un método de este tipo basado en la obtención de múltiples soluciones, desde puntos de partida aleatorios y calificando los resultados mediante la Estadística de Orden. El propósito es determinar la probabilidad de inicio de colapso para cada solución.El método se aplica (de acuerdo a la reducción de expectativas propuesta por la Optimización Ordinal) para obtener una solución que se encuentre en un porcentaje determinado de las peores. Finalmente, en el capítulo 7, se proponen métodos híbridos, incorporando metaheurísticas, para los casos en que la búsqueda del mínimo global esté justificada. Abstract Safety assessment of the historic masonry structures is an open problem. The material is heterogeneous and anisotropic, the previous state of stress is hard to know and the boundary conditions are uncertain. In the early 50's it was proven that limit analysis was applicable to this kind of structures, being considered a suitable tool since then. In cases where no slip occurs, the application of the standard limit analysis theorems constitutes an excellent tool due to its simplicity and robustness. It is enough find any equilibrium solution which satisfy the limit constraints of the material. As we are certain that this load will be equal to or less than the actual load of the onset of collapse, it is not necessary to know the actual stresses state. Furthermore this load for the onset of collapse is unique (uniqueness theorem), and it can be obtained as the optimal from any of two mathematical convex duals programs However, if the mechanisms of the onset of collapse involve sliding, any solution must satisfy both static and kinematic constraints, and also a special kind of disjunctive constraints linking the previous ones, which can be formulated as complementarity constraints. In the latter case, it is not guaranted the existence of a single solution, so it is necessary to look for other ways to treat the uncertainty associated with its multiplicity. In recent years, research has been focused on finding an absolute minimum below which collapse is impossible. This method is easy to set from a mathematical point of view, but computationally intractable. This is due to the complementarity constraints 0 y z 0 , which are neither convex nor smooth. The computational complexity of the resulting decision problem is "Not-deterministic Polynomialcomplete" (NP-complete), and the corresponding global optimization problem is NP-hard. However, obtaining a solution (success is not guaranteed) is an affordable problem. This thesis proposes solve that problem through Successive Linear Programming: taking advantage of the special characteristics of complementarity constraints, which written in bilinear form are y z = 0; y 0; z 0 ; and taking advantage of the fact that the complementarity error (bilinear form) is an exact penalty function. But when it comes to finding the worst solution, the (equivalent) global optimization problem is intractable (NP-hard). Furthermore, until a minimum or maximum principle is not demonstrated, it is questionable that the effort expended in approximating this minimum is justified. XIV In chapter 5, it is proposed find the frequency distribution of the load factor, for all possible solutions of the onset of collapse, on a simple example. For this purpose, a Monte Carlo sampling of solutions is performed using a contrast method "exact computation of polytopes". The ultimate goal is to determine to which extent the search of the global minimum is justified, and to propose an alternative approach to safety assessment based on probabilities. The frequency distributions for the case study show that both the maximum and the minimum load factors are very infrequent, especially when the contact gets more perfect and more continuous. The results indicates the interest of developing new probabilistic methods. In Chapter 6, is proposed a method based on multiple solutions obtained from random starting points, and qualifying the results through Order Statistics. The purpose is to determine the probability for each solution of the onset of collapse. The method is applied (according to expectations reduction given by the Ordinal Optimization) to obtain a solution that is in a certain percentage of the worst. Finally, in Chapter 7, hybrid methods incorporating metaheuristics are proposed for cases in which the search for the global minimum is justified.
Resumo:
This paper describes a fully automatic simultaneous lung vessel and airway enhancement filter. The approach consists of a Frangi-based multiscale vessel enhancement filtering specifically designed for lung vessel and airway detection, where arteries and veins have high contrast with respect to the lung parenchyma, and airway walls are hollow tubular structures with a non negative response using the classical Frangi's filter. The features extracted from the Hessian matrix are used to detect centerlines and approximate walls of airways, decreasing the filter response in those areas by applying a penalty function to the vesselness measure. We validate the segmentation method in 20 CT scans with different pathological states within the VESSEL12 challenge framework. Results indicate that our approach obtains good results, decreasing the number of false positives in airway walls.
Resumo:
Reactive power is critical to the operation of the power networks on both safety aspects and economic aspects. Unreasonable distribution of the reactive power would severely affect the power quality of the power networks and increases the transmission loss. Currently, the most economical and practical approach to minimizing the real power loss remains using reactive power dispatch method. Reactive power dispatch problem is nonlinear and has both equality constraints and inequality constraints. In this thesis, PSO algorithm and MATPOWER 5.1 toolbox are applied to solve the reactive power dispatch problem. PSO is a global optimization technique that is equipped with excellent searching capability. The biggest advantage of PSO is that the efficiency of PSO is less sensitive to the complexity of the objective function. MATPOWER 5.1 is an open source MATLAB toolbox focusing on solving the power flow problems. The benefit of MATPOWER is that its code can be easily used and modified. The proposed method in this thesis minimizes the real power loss in a practical power system and determines the optimal placement of a new installed DG. IEEE 14 bus system is used to evaluate the performance. Test results show the effectiveness of the proposed method.
Resumo:
Purpose – Curve fitting from unordered noisy point samples is needed for surface reconstruction in many applications -- In the literature, several approaches have been proposed to solve this problem -- However, previous works lack formal characterization of the curve fitting problem and assessment on the effect of several parameters (i.e. scalars that remain constant in the optimization problem), such as control points number (m), curve degree (b), knot vector composition (U), norm degree (k), and point sample size (r) on the optimized curve reconstruction measured by a penalty function (f) -- The paper aims to discuss these issues -- Design/methodology/approach - A numerical sensitivity analysis of the effect of m, b, k and r on f and a characterization of the fitting procedure from the mathematical viewpoint are performed -- Also, the spectral (frequency) analysis of the derivative of the angle of the fitted curve with respect to u as a means to detect spurious curls and peaks is explored -- Findings - It is more effective to find optimum values for m than k or b in order to obtain good results because the topological faithfulness of the resulting curve strongly depends on m -- Furthermore, when an exaggerate number of control points is used the resulting curve presents spurious curls and peaks -- The authors were able to detect the presence of such spurious features with spectral analysis -- Also, the authors found that the method for curve fitting is robust to significant decimation of the point sample -- Research limitations/implications - The authors have addressed important voids of previous works in this field -- The authors determined, among the curve fitting parameters m, b and k, which of them influenced the most the results and how -- Also, the authors performed a characterization of the curve fitting problem from the optimization perspective -- And finally, the authors devised a method to detect spurious features in the fitting curve -- Practical implications – This paper provides a methodology to select the important tuning parameters in a formal manner -- Originality/value - Up to the best of the knowledge, no previous work has been conducted in the formal mathematical evaluation of the sensitivity of the goodness of the curve fit with respect to different possible tuning parameters (curve degree, number of control points, norm degree, etc.)
Resumo:
In this paper, we use time series analysis to evaluate predictive scenarios using search engine transactional logs. Our goal is to develop models for the analysis of searchers’ behaviors over time and investigate if time series analysis is a valid method for predicting relationships between searcher actions. Time series analysis is a method often used to understand the underlying characteristics of temporal data in order to make forecasts. In this study, we used a Web search engine transactional log and time series analysis to investigate users’ actions. We conducted our analysis in two phases. In the initial phase, we employed a basic analysis and found that 10% of searchers clicked on sponsored links. However, from 22:00 to 24:00, searchers almost exclusively clicked on the organic links, with almost no clicks on sponsored links. In the second and more extensive phase, we used a one-step prediction time series analysis method along with a transfer function method. The period rarely affects navigational and transactional queries, while rates for transactional queries vary during different periods. Our results show that the average length of a searcher session is approximately 2.9 interactions and that this average is consistent across time periods. Most importantly, our findings shows that searchers who submit the shortest queries (i.e., in number of terms) click on highest ranked results. We discuss implications, including predictive value, and future research.
Resumo:
We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.
Resumo:
Adaptation to climate change has become an important policy question in recent years. Agriculture is an economic activity that is most sensitive to climate change. We evaluate the dynamic effects of productivity change and individual efforts to adapt to climate change. Adaptation actions in agriculture are evaluated to determine how the climate affects production efficiency. In this paper, we use the bi-directional distance function method to measure Japanese rice production loss due to climate. We find that (1) accumulated precipitation has the greatest effect on rice production efficiency and (2) the climate effect on rice production efficiency decreases over time. Our results empirically support the benefit of the adaptation approach.