998 resultados para partial-melt


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Greater Himalayan leucogranites are a discontinuous suite of intrusions emplaced in a thickened crust during the Miocene southward ductile extrusion of the Himalayan metamorphic core. Melt-induced weakening is thought to have played a critical role in strain localization that facilitated the extrusion. Recent advancements in centrifuge analogue modelling techniques allow for the replication of a broader range of crustal deformation behaviors, enhancing our understanding of large hot orogens. Polydimethylsiloxane (PDMS) is commonly used in centrifuge experiments to model weak melt zones. Difficulties in handling PDMS had, until now, limited its emplacement in models prior to any deformation. A new modelling technique has been developed where PDMS is emplaced into models that have been subjected to some shortening. This technique aims to better understand the effects of melt on strain localization and potential decoupling between structural levels within an evolving orogenic system. Models are subjected to an early stage of shortening, followed by the introduction of PDMS, and then a final stage of shortening. Theoretical percentages of partial melt and their effect on rock strength are considered when adding a specific percentage of PDMS in each model. Due to the limited size of the models, only PDMS sheets of 3 mm thickness were used, which varied in length and width. Within undeformed packages, minimal surface and internal deformation occurred when PDMS is emplaced in the lower layer of the model, showing a vertical volume increase of ~20% within the package; whereas the emplacement of PDMS into the middle layer showed internal dragging of the middle laminations into the lower layer and a vertical volume increase ~30%. Emplacement of PDMS results in ~7% shortening for undeformed and deformed models. Deformed models undergo ~20% additional shortening after two rounds of deformation. Strain localization and decoupling between units occur in deformed models where the degree of deformation changes based on the amount of partial melt present. Surface deformation visible by the formation of a bulge, mode 1 extension cracks and varying surface strain ellipses varies depending if PDMS is present. Better control during emplacement is exhibited when PDMS is added into cooler models, resulting in reduced internal deformation within the middle layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present high spatial resolution ion-microprobe rare earth element (REE) data for discrete growth phases of complex polyphase zircons from early Archaean Amitsoq gneisses, outer Godthabsfjord, SW Greenland. In Matsuda diagrams, the two major growth phases, >3.8 Ga cores and ca. 3.65 Ga rims, have steep positive slopes from La to Lu, prominent positive Ce anomalies and negative Eu anomalies that are consistent with growth in a melt. Exceptions to this are non-cathodolurnmescent zircon developed between the cores and rims, sometimes truncating zoning in the cores, and late Archaean prismatic tip overgrowths, both of which exhibit flatter light REE (LREE) patterns and have small or no Eu anomaly, which we interpret as the result of metamorphism and/or small-degree, isolated partial melting. Our data support previous interpretations that the ca. 3.65 Ga zircon phase was generated in a melt, with the >3.8 Ga phase representing either original protolith zircons in a large degree partial melt or inherited zircons in an introduced magma. Regardless which of these two interpretations is correct for these, and similar, rocks in the outer GodthAbsfjord, the 3.65 Ga event will have profoundly affected isotopic systems and obscured beyond recognition any earlier igneous features such as cross-cutting relationships, which may only be assigned a minimum 3.65 Ga age. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Greater Himalayan leucogranites are a discontinuous suite of intrusions emplaced in a thickened crust during the Miocene southward ductile extrusion of the Himalayan metamorphic core. Melt-induced weakening is thought to have played a critical role in strain localization that facilitated the extrusion. Recent advancements in centrifuge analogue modelling techniques allow for the replication of a broader range of crustal deformation behaviors, enhancing our understanding of large hot orogens. Polydimethylsiloxane (PDMS) is commonly used in centrifuge experiments to model weak melt zones. Difficulties in handling PDMS had, until now, limited its emplacement in models prior to any deformation. A new modelling technique has been developed where PDMS is emplaced into models that have been subjected to some shortening. This technique aims to better understand the effects of melt on strain localization and potential decoupling between structural levels within an evolving orogenic system. Models are subjected to an early stage of shortening, followed by the introduction of PDMS, and then a final stage of shortening. Theoretical percentages of partial melt and their effect on rock strength are considered when adding a specific percentage of PDMS in each model. Due to the limited size of the models, only PDMS sheets of 3 mm thickness were used, which varied in length and width. Within undeformed packages, minimal surface and internal deformation occurred when PDMS is emplaced in the lower layer of the model, showing a vertical volume increase of ~20% within the package; whereas the emplacement of PDMS into the middle layer showed internal dragging of the middle laminations into the lower layer and a vertical volume increase ~30%. Emplacement of PDMS results in ~7% shortening for undeformed and deformed models. Deformed models undergo ~20% additional shortening after two rounds of deformation. Strain localization and decoupling between units occur in deformed models where the degree of deformation changes based on the amount of partial melt present. Surface deformation visible by the formation of a bulge, mode 1 extension cracks and varying surface strain ellipses varies depending if PDMS is present. Better control during emplacement is exhibited when PDMS is added into cooler models, resulting in reduced internal deformation within the middle layer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Crystal growth of melt-textured Nd-123 pseudo-crystals was investigated via an isothermal solidification with top-seeding technique under a 1%O2 in N2 atmosphere. Non-steady state solidification was observed at low undercooling, in contrast to an almost linear growth at higher undercooling. Similar to processing in air, the substitution of Nd/Ba was found to decrease from the seed position to the edge of the crystal. In addition, the volume fraction of Nd-422 particles decreased in the solid as solidification proceeded. As a result of these microstructural inhomogeneities, the critical temperature and the critical current density varied within the crystal even for samples processed isothermally, despite the narrow solid solution range of the Nd-123 phase under a reduced pO2 atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potassium disilicate glass and melt have been investigated by using a new partial charge based potential model in which nonbridging oxygens are differentiated from bridging oxygens by their charges. The model reproduces the structural data pertaining to the coordination polyhedra around potassium and the various bond angle distributions excellently. The dynamics of the glass has been studied by using space and time correlation functions. It is found that K ions migrate by a diffusive mechanism in the melt and by hops below the glass transition temperature. They are also found to migrate largely through nonbridging oxygenrich sites in the silicate matrix, thus providing support to the predictions of the modified random network model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potassium disilicate glass and melt have been investigated by using anew partial charge based potential model in which nonbridging oxygens are differentiated from bridging oxygens by their charges. The model reproduces the structural data pertaining to the coordination polyhedra around potassium and the various bond angle distributions excellently. The dynamics of the glass has been studied by using space and time correlation functions. It is found that K ions migrate by a diffusive mechanism in the melt and by hops below the glass transition temperature. They are also found to migrate largely through nonbridging oxygen-rich sites in the silicate matrix, thus providing support to the predictions of the modified random network model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by counter flowing water. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. Melt pouring temperature provides required condition of solidification whereas plate inclination enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained was solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets were heat treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets were analyzed. Effects of melt pouring temperature and plate inclination on solidification and microstructure of billets produced using oblique plate were described. The investigations involved four different melt pouring temperatures (620, 625, 630 and 635 degrees C) associated with four different plate inclinations (30 degrees, 45 degrees, 60 degrees and 75 degrees). Melt pouring temperature of 625 degrees C with plate inclination of 60 degrees shows fine and globular microstructures and it is the optimum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large, single grain Nd-Ba-Cu-O (NdBCO) composite samples of NdBa2Cu3O7-δ (Nd-123) containing 15 and 20 mol. % non-superconducting Nd4Ba2Cu2O10 (Nd-422) phase inclusions have been fabricated successfully by a variety of techniques based on top-seeded melt growth under reduced oxygen partial pressure. Specifically, individual grains up to 2cm in diameter have been grown using (100) oriented MgO seeding, self (NdBCO) seeding at elevated temperature and self-seeding of Ag and Au doped precursor pellets. The latter exhibit a reduced peritectic decomposition temperature compared with the undoped compound. These techniques, which vary in degree of difficulty and hence reliability, yield grains with a range of microstructural homogeneity. This paper describes the general aspects of large NdBCO grain fabrication and presents the results of the different fabrication techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After isothermal crystallization of the amorphous poly(ether ether ketone), double endothermic behaviour can be found through differential scanning calorimetry experiments. During the heating scan of semicrystalline PEEK, a metastable melt, which comes from the melt of the thinner lamellar crystal populations, can be obtained between these two endotherms. The metastable melt can recrystallize immediately just above the lower melting temperature and form slightly thicker lamellae than the original ones. The thickness and the perfection depend upon the crystallization time and the crystallization temperature. By comparing the TEM morphological observations of the samples before and after partial melting, it can be shown that lamellar crystals, having different thermodynamic stability, form during isothermal crystallization. After partial melting, only the type of lamellar crystal exhibiting the higher thermodynamic stability remains. Wide angle X-ray diffraction measurements shows a slightly change in the crystallinity of the samples before and after the partial melting. Small angle X-ray scattering results exhibit a change in the long period of the lamellar crystals before and after the partial melting process. The crystallization kinetics of the metastable melt can be determined by means of differential scanning calorimetry. The kinetic analysis showed that the isothermal crystallization of the metastable PEEK melt proceeds with an Avrami exponent of n = 1.0 similar to 1.4, reflecting that probably one-dimensional or an irregular line growth of the crystal occurred between the existing main lamellae with heterogeneous nucleation. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the effects of polyethylene glycol (PEG), on the mechanical and thermal properties of nalidixic acid/ploy ε-caprolactone (NA)/PCL blends prepared by hot melt extrusion. The blends were characterized by tensile and flexural analysis, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis and X-ray diffraction. Experimental data indicated that the addition of NA caused loss of the tensile strength and toughness of PCL. Thermal analysis of the PCL showed that on addition of the thermally unstable NA, thermal degradation occurred early and was autocatalytic. However, the NA did benefit from the heat shielding provided by the PCL matrix resulting in more thermally stable NA particles. Results show that loading PEG in the PCL had a detrimental effect on the tensile strength and toughness of the blends, reducing them by 20-40%. The partial miscibility of the PCL-PEG system, causes an increase in Tg. While increases in the crystallinity is attributed to the plasticisation effect of PEG and the nucleation effect of NA. The average crystal size increased by 8% upon PEG addition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-grade metasedimentary rocks can preserve geochemical signatures of their sedimentary protolith if significant melt extraction did not occur. Retrograde reaction textures provide the main evidence for trapped melt in the rock fabrics. Carvalhos Klippe rocks in Southern Brasilia Orogen, Brazil, present a typical high-pressure granulite assemblage with evidence of mica breakdown partial melting (Ky + Grt + Kfs +/- Bt +/- Rt). The metamorphic peak temperatures obtained by Zr-in-Rt and ternary feldspar geothermometers are between 850 degrees C and 900 degrees C. The GASP bane peak pressure obtained using grossular rich garnet core is 16 kbar. Retrograde reaction textures in which the garnet crystals are partially to totally replaced by Bt + Qtz +/- Fsp intergrowths are very common in the Carvalhos Klippe rocks. These reactions are interpreted as a result of interactions between residual phases and trapped melt during the retrograde path. In the present study the geochemical signatures of three groups of Carvalhos Klippe metasedimentary rocks are analysed. Despite the high metamorphic grade these three groups show well-defined geochemical features and their REE patterns are similar to average compositions of post-Archean sedimentary rocks (PAAS, NASC). The high-pressure granulite facies Grt-Bt-Pl gneisses with immature arenite (wacke, arkose or lithic-arenite) geochemical signatures present in the Carvalhos Klippe are compared to similar rocks in amphibolite facies from the same tectonic framework (Andrelandia Nappe System). The similar geochemical signatures between Grt-Bt-Pl gneisses metamorphosed in high-pressure granulite facies and Grt-Bt-Pl-Qtz schists from the Andrelandia and Liberdade Nappes, with minimal to absent melting conditions, are suggestive of low rates of melt extraction in these high-grade rocks. The rocks with pelitic compositions most likely had higher melt extraction and even under such circumstances nevertheless tend to show REE patterns similar to average compositions of post-Archean sedimentary rocks (PAAS, NASC). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD thesis concerns geochemical constraints on recycling and partial melting of Archean continental crust. A natural example of such processes was found in the Iisalmi area of Central Finland. The rocks from this area are Middle to Late Archean in age and experienced metamorphism and partial melting between 2.7-2.63 Ga. The work is based on extensive field work. It is furthermore founded on bulk rock geochemical data as well as in-situ analyses of minerals. All geochemical data were obtained at the Institute of Geosciences, University of Mainz using X-ray fluorescence, solution ICP-MS and laser ablation-ICP-MS for bulk rock geochemical analyses. Mineral analyses were accomplished by electron microprobe and laser ablation ICP-MS. Fluid inclusions were studied by microscope on a heating-freezing-stage at the Geoscience Center, University Göttingen. Part I focuses on the development of a new analytical method for bulk rock trace element determination by laser ablation-ICP-MS using homogeneous glasses fused from rock powder on an Iridium strip heater. This method is applicable for mafic rock samples whose melts have low viscosities and homogenize quickly at temperatures of ~1200°C. Highly viscous melts of felsic samples prevent melting and homogenization at comparable temperatures. Fusion of felsic samples can be enabled by addition of MgO to the rock powder and adjustment of melting temperature and melting duration to the rock composition. Advantages of the fusion method are low detection limits compared to XRF analyses and avoidance of wet-chemical processing and use of strong acids as in solution ICP-MS as well as smaller sample volumes compared to the other methods. Part II of the thesis uses bulk rock geochemical data and results from fluid inclusion studies for discrimination of melting processes observed in different rock types. Fluid inclusion studies demonstrate a major change in fluid composition from CO2-dominated fluids in granulites to aqueous fluids in TTG gneisses and amphibolites. Partial melts were generated in the dry, CO2-rich environment by dehydration melting reactions of amphibole which in addition to tonalitic melts produced the anhydrous mineral assemblages of granulites (grt + cpx + pl ± amph or opx + cpx + pl + amph). Trace element modeling showed that mafic granulites are residues of 10-30 % melt extraction from amphibolitic precursor rocks. The maximum degree of melting in intermediate granulites was ~10 % as inferred from modal abundances of amphibole, clinopyroxene and orthopyroxene. Carbonic inclusions are absent in upper-amphibolite facies migmatites whereas aqueous inclusion with up to 20 wt% NaCl are abundant. This suggests that melting within TTG gneisses and amphibolites took place in the presence of an aqueous fluid phase that enabled melting at the wet solidus at temperatures of 700-750°C. The strong disruption of pre-metamorphic structures in some outcrops suggests that the maximum amount of melt in TTG gneisses was ~25 vol%. The presence of leucosomes in all rock types is taken as the principle evidence for melt formation. However, mineralogical appearance as well as major and trace element composition of many leucosomes imply that leucosomes seldom represent frozen in-situ melts. They are better considered as remnants of the melt channel network, e.g. ways on which melts escaped from the system. Part III of the thesis describes how analyses of minerals from a specific rock type (granulite) can be used to determine partition coefficients between different minerals and between minerals and melt suitable for lower crustal conditions. The trace element analyses by laser ablation-ICP-MS show coherent distribution among the principal mineral phases independent of rock composition. REE contents in amphibole are about 3 times higher than REE contents in clinopyroxene from the same sample. This consistency has to be taken into consideration in models of lower crustal melting where amphibole is replaced by clinopyroxene in the course of melting. A lack of equilibrium is observed between matrix clinopyroxene / amphibole and garnet porphyroblasts which suggests a late stage growth of garnet and slow diffusion and equilibration of the REE during metamorphism. The data provide a first set of distribution coefficients of the transition metals (Sc, V, Cr, Ni) in the lower crust. In addition, analyses of ilmenite and apatite demonstrate the strong influence of accessory phases on trace element distribution. Apatite contains high amounts of REE and Sr while ilmenite incorporates about 20-30 times higher amounts of Nb and Ta than amphibole. Furthermore, trace element mineral analyses provide evidence for magmatic processes such as melt depletion, melt segregation, accumulation and fractionation as well as metasomatism having operated in this high-grade anatectic area.