992 resultados para parasite resistance
Resumo:
The control of parasitic diseases in small ruminants is mainly done with the use of synthetic anthelmintics. However, incorrect and indiscriminate use of these products has caused the emergence of parasite resistance. Plants with anthelmintic activity are used in folk veterinary medicine, but it is necessary to investigate and scientifically validate low-cost phytotherapeutic alternatives for future use to control gastrointestinal nematodes in small ruminants by family farmers. Thus, the aim of this study was to evaluate the in vitro anthelmintic effect of plant extracts from Melia azedarach and Trichilia claussenii by the egg hatch test (EHT) and larval development test (LDT) against sheep gastrointestinal nematodes. The hexane extract of M. azedarach fruits was extracted through cold percolation and the methanol extract of T. claussenii leaves was obtained by extraction at room temperature in solvents in order of increasing polarity. The efficacy results were analyzed using the Probit program of SAS. The M. azedarach extract showed a LC50 of 572.2 mu g/mL and LC99 of 1137.8 mu g/mL in the EHT, and LC50 of 0.7 mu g/mL and LC99 of 60.81 mu g/mL in the LDT. In turn, the T. claussenii extract presented a LC50 of 263.8 mu g/mL and LC99 of 522.5 mu g/mL in the EHTand LC50 of 1.11 mu g/mL and LC99 of 26.4 mu g/mL in the LDT. Comparing the extracts of the species from the Meliaceae family, T. claussenii showed greater anti-parasite potential in vitro than M. azedarach. However, studies on the isolated compounds, toxicity and administration forms to animals are also needed to validate low-cost alternative herbal remedies for use to control gastrointestinal nematodes by family farmers. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one Holstein, and one Hereford) and one indicine (Nelore) cattle. Within mapped chromosomal sequence, we identified 1265 CNV regions comprising similar to 55.6-Mbp sequence-476 of which (similar to 38%) have not previously been reported. We validated this sequence-based CNV call set with array comparative genomic hybridization (aCGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH), achieving a validation rate of 82% and a false positive rate of 8%. We further estimated absolute copy numbers for genomic segments and annotated genes in each individual. Surveys of the top 25 most variable genes revealed that the Nelore individual had the lowest copy numbers in 13 cases (similar to 52%, chi(2) test; P-value <0.05). In contrast, genes related to pathogen- and parasite-resistance, such as CATHL4 and ULBP17, were highly duplicated in the Nelore individual relative to the taurine cattle, while genes involved in lipid transport and metabolism, including APOL3 and FABP2, were highly duplicated in the beef breeds. These CNV regions also harbor genes like BPIFA2A (BSP30A) and WC1, suggesting that some CNVs may be associated with breed-specific differences in adaptation, health, and production traits. By providing the first individualized cattle CNV and segmental duplication maps and genome-wide gene copy number estimates, we enable future CNV studies into highly duplicated regions in the cattle genome.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Sheep and goat farming requires an efficient management program, due to losses caused by parasites in susceptible animals. Many factors may collaborate to improve infection tolerance in the herd, such as: genetics, nutrition, physiological status, and age. The problem caused by resistance to antihelmintic agents has led to the spread of alternative techniques for parasite controls. The latest strategies include selective treatment with the FAMACHA method, phytotherapy, biological control with predatory fungi, and strategies that still await scientific confirmation, such as homeopathy, the dilution of resistance with the introduction of susceptible parasites, and the combination of drugs without antihelmintic effect. The main objective of these methods is to reduce the usage of antiparasitic agents, thus slowing the development of resistance and promoting the better use of effective products and newly released products. The objective of this article is to describe techniques for controlling nematodes in small ruminants, and it is aimed at technicians interested in increasing their knowledge about the mechanisms of resistance to antihelmintic agents as well as alternatives to the use of these products.
Resumo:
Adaptation of global food systems to climate change is essential to feed the world. Tropical cattle production, a mainstay of profitability for farmers in the developing world, is dominated by heat, lack of water, poor quality feedstuffs, parasites, and tropical diseases. In these systems European cattle suffer significant stock loss, and the cross breeding of taurine x indicine cattle is unpredictable due to the dilution of adaptation to heat and tropical diseases. We explored the genetic architecture of ten traits of tropical cattle production using genome wide association studies of 4,662 animals varying from 0% to 100% indicine. We show that nine of the ten have genetic architectures that include genes of major effect, and in one case, a single location that accounted for more than 71% of the genetic variation. One genetic region in particular had effects on parasite resistance, yearling weight, body condition score, coat colour and penile sheath score. This region, extending 20 Mb on BTA5, appeared to be under genetic selection possibly through maintenance of haplotypes by breeders. We found that the amount of genetic variation and the genetic correlations between traits did not depend upon the degree of indicine content in the animals. Climate change is expected to expand some conditions of the tropics to more temperate environments, which may impact negatively on global livestock health and production. Our results point to several important genes that have large effects on adaptation that could be introduced into more temperate cattle without detrimental effects on productivity.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Theory suggests that carotenoid-based signals are used in animal communication because they contain specific information about parasite resistance or immunocompetence. This implies that honesty of carotenoid-based signals is maintained by a trade-off between pigmentation and immune function for carotenoids, assuming that the carotenoids used for coloration are also immunoenhancing. We tested this hypothesis by altering the diets of nestling great tits (Paris major) with supplementary beadlets containing the carotenoids that are naturally ingested with food or beadlets containing the carotenoids that are incorporated into the feathers; a control group received beadlets containing no carotenoids. We simultaneously immune challenged half of the nestlings of each supplementation group, using a two-factorial design. Activatior of the immune system led to reduced color expression. However, only nestlings fed with the naturally ingested carotenoids and not with the carotenoids deposited in the feathers showed an increased cellular immune response. This shows that the carotenoids used for ornamentation do not promote the immune function, which conflicts with the trade-off hypothesis. Our results indicate that honesty of carotenoid-based signals is maintained by an individual's physiological limitation to absorb and/or transport carotenoids and by access to carotenoids, indicating that preferences for carotenoid-based traits in sexual selection or parent-offspring interactions select for competitive individuals, rather than specifically for immune function.
Resumo:
BACKGROUND The evolution of insecticide resistance threatens current malaria control methods, which rely heavily on chemical insecticides. The magnitude of the threat will be determined by the phenotypic expression of resistance in those mosquitoes that can transmit malaria. These differ from the majority of the mosquito population in two main ways; they carry sporozoites (the infectious stage of the Plasmodium parasite) and they are relatively old, as they need to survive the development period of the malaria parasite. This study examines the effects of infection by Plasmodium berghei and of mosquito age on the sensitivity to DDT in a DDT-resistant strain of Anopheles gambiae. METHODS DDT-resistant Anopheles gambiae (ZANU) mosquitoes received a blood meal from either a mouse infected with Plasmodium berghei or an uninfected mouse. 10 and 19 days post blood meal the mosquitoes were exposed to 2%, 1% or 0% DDT using WHO test kits. 24 hrs after exposure, mortality and Plasmodium infection status of the mosquitoes were recorded. RESULTS Sensitivity to DDT increased with the mosquitoes' age and was higher in mosquitoes that had fed on Plasmodium-infected mice than in those that had not been exposed to the parasite. The latter effect was mainly due to the high sensitivity of mosquitoes that had fed on an infected mouse but were not themselves infected, while the sensitivity to DDT was only slightly higher in mosquitoes infected by Plasmodium than in those that had fed on an uninfected mouse. CONCLUSIONS The observed pattern indicates a cost of parasite-resistance. It suggests that, in addition to the detrimental effect of insecticide-resistance on control, the continued use of insecticides in a population of insecticide-resistant mosquitoes could select mosquitoes to be more susceptible to Plasmodium infection, thus further decreasing the efficacy of the control.
Resumo:
Malaria poses a significant public health problem worldwide. The World Health Organization indicates that approximately 40% of the world's population and almost 85% of the population from the South–East Asian region is at risk of contracting malaria. India being the most populous country in the region, contributes the highest number of malaria cases and deaths attributed to malaria. Orissa is the state that has the highest number of malaria cases and deaths attributable to malaria. A secondary data analysis was carried out to evaluate the effectiveness of the World bank-assisted Malaria Action Program in the state of Orissa under the health sector reforms of 1995-96. The secondary analysis utilized the government of India's National Anti Malaria Management Information System's (NAMMIS) surveillance data and the National Family Health Survey (NFHS–I and NFHS–II) datasets to compare the malaria mortality and morbidity in the state between 1992-93 and 1998-99. Results revealed no effect of the intervention and indicated an increase of 2.18 times in malaria mortality between 1992-1999 and an increase of 1.53 times in malaria morbidity between 1992-93 and 1998-99 in the state. The difference in the age-adjusted malaria morbidity in the state between the time periods of 1992-93 and 1998-99 proved to be highly significant (t = 4.29 df=16, p<. 0005) whereas the difference between the increase of age-adjusted malaria morbidity during 1992-93 and 1998-99 between Orissa (with intervention) and Bihar (no intervention) proved to be non significant (t=.0471 df=16, p<.50). Factors such as underutilization of World Bank funds for the malaria control program, inadequate health care infrastructure, structural adjustment problems, poor management, poor financial management, parasite resistance to anti-malarial drugs, inadequate supply of drugs and staff shortages may have contributed to the failure of the program in the state.^
Resumo:
Parasite resistance to antimalarial drugs is a serious threat to human health, and novel agents that act on enzymes essential for parasite metabolism, such as proteases, are attractive targets for drug development. Recent studies have shown that clinically utilized human immunodeficiency virus (HIV) protease inhibitors can inhibit the in vitro growth of Plasmodium falciparum at or below concentrations found in human plasma after oral drug administration. The most potent in vitro antimalarial effects have been obtained for parasites treated with saquinavir, ritonavir, or lopinavir, findings confirmed in this study for a genetically distinct P. falciparum line (3D7). To investigate the potential in vivo activity of antiretroviral protease inhibitors (ARPIs) against malaria, we examined the effect of ARPI combinations in a murine model of malaria. In mice infected with Plasmodium chabaudi AS and treated orally with ritonavir-saquinavir or ritonavir-lopinavir, a delay in patency and a significant attenuation of parasitemia were observed. Using modeling and ligand docking studies we examined putative ligand binding sites of ARPIs in aspartyl proteases of P. falciparum (plasmepsins II and IV) and P. chabaudi (plasmepsin) and found that these in silico analyses support the antimalarial activity hypothesized to be mediated through inhibition of these enzymes. In addition, in vitro enzyme assays demonstrated that P. falciparum plasmepsins II and IV are both inhibited by the ARPIs saquinavir, ritonavir, and lopinavir. The combined results suggest that ARPIs have useful antimalarial activity that may be especially relevant in geographical regions where HIV and P. falciparum infections are both endemic.
Resumo:
Gastrointestinal helminths are a major constraint to small ruminants in extensive husbandry systems of tropical regions. Yet, unavailability, high prices, side effects, and development of parasite resistance often limit the use of synthetic anthelmintics. Traditional medicinal plants might be an effective low-cost alternative. Therefore the in vitro anthelmintic activity of leaf extracts of the ligneous plants Capparis decidua, Salsola foetida, Suaeda fruticosa, Haloxylon salicornicum, and Haloxylon recurvum from Cholistan, Pakistan, was investigated against adult worms of Haemonchus contortus, Trichuris ovis, and Paramphistomum cervi. Various concentrations (from 7.8 to 500 mg dry matter ml^(−1)) of three extracts (aqueous, methanol, and aqueous-methanol) of each plant were tested at different time intervals for their anthelmintic activity via adult motility assay. Plant species (p<=0.01), extract type (p<=0.001), parasite species (p<=0.001), extract concentration (p<=0.001), time of exposure (p<=0.001) and their interactions (p<=0.001) affected the number of immobile or dead helminths. The 50% lethal concentration (LC_(50)) values indicated that the methanol and aqueous-methanol extracts of C. decidua, H. recurvum, and H. salicornicum as well as the methanol extract of S. fruticosa have the potential to be developed into plant-based remedies against the studied helminths. Further studies are needed to investigate the in vivo anthelmintic activity of these extracts, in order to develop effective, cheap and locally available anthelmintics for pastoralists in Cholistan and neighbouring desert regions.
Resumo:
This study was carried out to evaluate the relationship of abomasal inflammatory cells and parasite-specific immunoglobulin A (IgA) in mucus, with the resistance to Haemonchus contortus infection in three breeds of sheep naturally infected with gastrointestinal nematodes. The breeds were the native Santa Ines sheep, and the European Suffolk and Ile de France breeds. Mast cells, eosinophils and globule leucocytes were enumerated in abomasal mucosa. Eosinophils within the sub-mucosa also were counted separately. Histamine concentration was estimated in abomasal tissue samples. Enzyme-linked immunosorbent assay was carried out in mucus samples to determine the level of IgA anti-H. contortus third and fifth instar. There were no significant differences among group means of these variables (P > 0.05). The correlation coefficients between fecal egg counts (FEC) x mast cells (r = -0.490; P < 0.05) and FEC x eosinophils in sub-mucosa (r = -0.714; P < 0.01) was significant in the Santa Ines sheep. In the Ile de France group, the correlation coefficients between globule leucocytes x FEC (r = -0.879; P < 0.001) and histamine x worm burden (r = -0.833; P < 0.01) were also significant. In the Santa Ines and Ile de France sheep, correlation coefficients between IgA anti-L3 x worm burden and IgA anti-L3 x FEC were negative. In general, inflammatory cells and IgA-parasite-specific in abomasum were inversely associated with H. contortus worm burden and FEC indicating that they may impair parasite development or fecundity in the three breeds of sheep. However, similar mean values of inflammatory cells and IgA were found in the resistant (Santa Ines) and in the susceptible (Suffolk and Ile de France) breeds of sheep. The enumeration of cells by histological assessment does not provide information on their functional activity, which may be different among breeds. Thus, the effect of breed on the functional activity of these and other inflammatory cells is an important area for further study. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Powdery mildews, obligate biotrophic fungal parasites on a wide range of important crops, can be controlled by plant resistance (R) genes, but these are rapidly overcome by parasite mutants evading recognition. It is unknown how this rapid evolution occurs without apparent loss of parasite fitness. R proteins recognize avirulence (AVR) molecules from parasites in a gene-for-gene manner and trigger defense responses. We identify AVRa10 and AVRk1 of barley powdery mildew fungus, Blumeria graminis f sp hordei (Bgh), and show that they induce both cell death and naccessibility when transiently expressed in Mla10 and Mlk1 barley (Hordeum vulgare) varieties, respectively. In contrast with other reported fungal AVR genes, AVRa10 and AVRk1 encode proteins that lack secretion signal peptides and enhance infection success on susceptible host plant cells. AVRa10 and AVRk1 belong to a large family with mayor que30 paralogues in the genome of Bgh, and homologous sequences are present in other formae speciales of the fungus infecting other grasses. Our findings imply that the mildew fungus has a repertoire of AVR genes, which may function as effectors and contribute to parasite virulence. Multiple copies of related but distinct AVR effector paralogues might enable populations of Bgh to rapidly overcome host R genes while maintaining virulence.