976 resultados para parameter tuning, swarm intelligence, controllo semaforico, auto-organizzazione


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal allocation of water resources for various stakeholders often involves considerable complexity with several conflicting goals, which often leads to multi-objective optimization. In aid of effective decision-making to the water managers, apart from developing effective multi-objective mathematical models, there is a greater necessity of providing efficient Pareto optimal solutions to the real world problems. This study proposes a swarm-intelligence-based multi-objective technique, namely the elitist-mutated multi-objective particle swarm optimization technique (EM-MOPSO), for arriving at efficient Pareto optimal solutions to the multi-objective water resource management problems. The EM-MOPSO technique is applied to a case study of the multi-objective reservoir operation problem. The model performance is evaluated by comparing with results of a non-dominated sorting genetic algorithm (NSGA-II) model, and it is found that the EM-MOPSO method results in better performance. The developed method can be used as an effective aid for multi-objective decision-making in integrated water resource management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clustering has been the most popular method for data exploration. Clustering is partitioning the data set into sub-partitions based on some measures say the distance measure, each partition has its own significant information. There are a number of algorithms explored for this purpose, one such algorithm is the Particle Swarm Optimization(PSO) which is a population based heuristic search technique derived from swarm intelligence. In this paper we present an improved version of the Particle Swarm Optimization where, each feature of the data set is given significance accordingly by adding some random weights, which also minimizes the distortions in the dataset if any. The performance of the above proposed algorithm is evaluated using some benchmark datasets from Machine Learning Repository. The experimental results shows that our proposed methodology performs significantly better than the previously performed experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data clustering is a common technique for statistical data analysis, which is used in many fields, including machine learning and data mining. Clustering is grouping of a data set or more precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait according to some defined distance measure. In this paper we present the genetically improved version of particle swarm optimization algorithm which is a population based heuristic search technique derived from the analysis of the particle swarm intelligence and the concepts of genetic algorithms (GA). The algorithm combines the concepts of PSO such as velocity and position update rules together with the concepts of GA such as selection, crossover and mutation. The performance of the above proposed algorithm is evaluated using some benchmark datasets from Machine Learning Repository. The performance of our method is better than k-means and PSO algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Con este proyecto hemos querido proporcionar un conjunto de recursos útiles para la impartición de un curso de Swarm Intelligence enfocado a la Particle Swarm Optimization (PSO). Estos recursos constan de una aplicación en NetLogo para poder experimentar, ejecutar y visualizar los diferentes modelos de la PSO, un review de la Swarm Intelligence profundizando en la PSO y una ontología de PSO que incluye los recursos bibliográficos necesarios para la investigación y la escritura de artículos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scheduling problem in distributed data-intensive computing environments has become an active research topic due to the tremendous growth in grid and cloud computing environments. As an innovative distributed intelligent paradigm, swarm intelligence provides a novel approach to solving these potentially intractable problems. In this paper, we formulate the scheduling problem for work-flow applications with security constraints in distributed data-intensive computing environments and present a novel security constraint model. Several meta-heuristic adaptations to the particle swarm optimization algorithm are introduced to deal with the formulation of efficient schedules. A variable neighborhood particle swarm optimization algorithm is compared with a multi-start particle swarm optimization and multi-start genetic algorithm. Experimental results illustrate that population based meta-heuristics approaches usually provide a good balance between global exploration and local exploitation and their feasibility and effectiveness for scheduling work-flow applications. © 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern control methods like optimal control and model predictive control (MPC) provide a framework for simultaneous regulation of the tracking performance and limiting the control energy, thus have been widely deployed in industrial applications. Yet, due to its simplicity and robustness, the conventional P (Proportional) and PI (Proportional–Integral) control are still the most common methods used in many engineering systems, such as electric power systems, automotive, and Heating, Ventilation and Air Conditioning (HVAC) for buildings, where energy efficiency and energy saving are the critical issues to be addressed. Yet, little has been done so far to explore the effect of its parameter tuning on both the system performance and control energy consumption, and how these two objectives are correlated within the P and PI control framework. In this paper, the P and PI controllers are designed with a simultaneous consideration of these two aspects. Two case studies are investigated in detail, including the control of Voltage Source Converters (VSCs) for transmitting offshore wind power to onshore AC grid through High Voltage DC links, and the control of HVAC systems. Results reveal that there exists a better trade-off between the tracking performance and the control energy through a proper choice of the P and PI controller parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swarm Intelligence (SI) is a growing research field of Artificial Intelligence (AI). SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviours of insects and of other animals. This paper presents hybridization and combination of different AI approaches, like Bio-Inspired Techniques (BIT), Multi-Agent systems (MAS) and Machine Learning Techniques (ML T). The resulting system is applied to the problem of jobs scheduling to machines on dynamic manufacturing environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational Intelligence (CI) includes four main areas: Evolutionary Computation (genetic algorithms and genetic programming), Swarm Intelligence, Fuzzy Systems and Neural Networks. This article shows how CI techniques overpass the strict limits of Artificial Intelligence field and can help solving real problems from distinct engineering areas: Mechanical, Computer Science and Electrical Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Two-Connected Network with Bounded Ring (2CNBR) problem is a network design problem addressing the connection of servers to create a survivable network with limited redirections in the event of failures. Particle Swarm Optimization (PSO) is a stochastic population-based optimization technique modeled on the social behaviour of flocking birds or schooling fish. This thesis applies PSO to the 2CNBR problem. As PSO is originally designed to handle a continuous solution space, modification of the algorithm was necessary in order to adapt it for such a highly constrained discrete combinatorial optimization problem. Presented are an indirect transcription scheme for applying PSO to such discrete optimization problems and an oscillating mechanism for averting stagnation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work reported in this paper is motivated by the need for developing swarm pattern transformation methodologies. Two methods, namely a macroscopic method and a mathematical method are investigated for pattern transformation. The first method is based on macroscopic parameters while the second method is based on both microscopic and macroscopic parameters. A formal definition to pattern transformation considering four special cases of transformation is presented. Simulations on a physics simulation engine are used to confirm the feasibility of the proposed transformation methods. A brief comparison between the two methods is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gradual changes in the world development have brought energy issues back into high profile. An ongoing challenge for countries around the world is to balance the development gains against its effects on the environment. The energy management is the key factor of any sustainable development program. All the aspects of development in agriculture, power generation, social welfare and industry in Iran are crucially related to the energy and its revenue. Forecasting end-use natural gas consumption is an important Factor for efficient system operation and a basis for planning decisions. In this thesis, particle swarm optimization (PSO) used to forecast long run natural gas consumption in Iran. Gas consumption data in Iran for the previous 34 years is used to predict the consumption for the coming years. Four linear and nonlinear models proposed and six factors such as Gross Domestic Product (GDP), Population, National Income (NI), Temperature, Consumer Price Index (CPI) and yearly Natural Gas (NG) demand investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces an automated medical data classification method using wavelet transformation (WT) and interval type-2 fuzzy logic system (IT2FLS). Wavelet coefficients, which serve as inputs to the IT2FLS, are a compact form of original data but they exhibits highly discriminative features. The integration between WT and IT2FLS aims to cope with both high-dimensional data challenge and uncertainty. IT2FLS utilizes a hybrid learning process comprising unsupervised structure learning by the fuzzy c-means (FCM) clustering and supervised parameter tuning by genetic algorithm. This learning process is computationally expensive, especially when employed with high-dimensional data. The application of WT therefore reduces computational burden and enhances performance of IT2FLS. Experiments are implemented with two frequently used medical datasets from the UCI Repository for machine learning: the Wisconsin breast cancer and Cleveland heart disease. A number of important metrics are computed to measure the performance of the classification. They consist of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. Results demonstrate a significant dominance of the wavelet-IT2FLS approach compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus useful as a decision support system for clinicians and practitioners in the medical practice. copy; 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind farms are producing a considerable portion of the world renewable energy. Since the output power of any wind farm is highly dependent on the wind speed, the power extracted from a wind park is not always a constant value. In order to have a non-disruptive supply of electricity, it is important to have a good scheduling and forecasting system for the energy output of any wind park. In this paper, a new hybrid swarm technique (HAP) is used to forecast the energy output of a real wind farm located in Binaloud, Iran. The technique consists of the hybridization of the ant colony optimization (ACO) and particle swarm optimization (PSO) which are two meta-heuristic techniques under the category of swarm intelligence. The hybridization of the two algorithms to optimize the forecasting model leads to a higher quality result with a faster convergence profile. The empirical hourly wind power output of Binaloud Wind Farm for 364 days is collected and used to train and test the prepared model. The meteorological data consisting of wind speed and ambient temperature is used as the inputs to the mathematical model. The results indicate that the proposed technique can estimate the output wind power based on the wind speed and the ambient temperature with an MAPE of 3.513%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Motion Cueing Algorithm (MCA) transforms longitudinal and rotational motions into simulator movement, aiming to regenerate high fidelity motion within the simulators physical limitations. Classical washout filters are widely used in commercial simulators because of their relative simplicity and reasonable performance. The main drawback of classical washout filters is the inappropriate empirical parameter tuning method that is based on trial-and-error, and is effected by programmers’ experience. This is the most important obstacle to exploiting the platform efficiently. Consequently, the conservative motion produces false cue motions. Lack of consideration for human perception error is another deficiency of classical washout filters and also there is difficulty in understanding the effect of classical washout filter parameters on generated motion cues. The aim of this study is to present an effortless optimization method for adjusting the classical MCA parameters, based on the Genetic Algorithm (GA) for a vehicle simulator in order to minimize human sensation error between the real and simulator driver while exploiting the platform within its physical limitations. The vestibular sensation error between the real and simulator driver as well as motion limitations have been taken into account during optimization. The proposed optimized MCA based on GA is implemented in MATLAB/Simulink. The results show the superiority of the proposed MCA as it improved the human sensation, maximized reference signal shape following and exploited the platform more efficiently within the motion constraints.