284 resultados para palatine torus
Resumo:
We study the linear and nonlinear stability of stationary solutions of the forced two-dimensional Navier-Stokes equations on the domain [0,2π]x[0,2π/α], where α ϵ(0,1], with doubly periodic boundary conditions. For the linear problem we employ the classical energy{enstrophy argument to derive some fundamental properties of unstable eigenmodes. From this it is shown that forces of pure χ2-modes having wavelengths greater than 2π do not give rise to linear instability of the corresponding primary stationary solutions. For the nonlinear problem, we prove the equivalence of nonlinear stability with respect to the energy and enstrophy norms. This equivalence is then applied to derive optimal conditions for nonlinear stability, including both the high-and low-Reynolds-number limits.
Resumo:
Consider the massless Dirac operator on a 3-torus equipped with Euclidean metric and standard spin structure. It is known that the eigenvalues can be calculated explicitly: the spectrum is symmetric about zero and zero itself is a double eigenvalue. The aim of the paper is to develop a perturbation theory for the eigenvalue with smallest modulus with respect to perturbations of the metric. Here the application of perturbation techniques is hindered by the fact that eigenvalues of the massless Dirac operator have even multiplicity, which is a consequence of this operator commuting with the antilinear operator of charge conjugation (a peculiar feature of dimension 3). We derive an asymptotic formula for the eigenvalue with smallest modulus for arbitrary perturbations of the metric and present two particular families of Riemannian metrics for which the eigenvalue with smallest modulus can be evaluated explicitly. We also establish a relation between our asymptotic formula and the eta invariant.
Resumo:
We present mid-infrared (mid-IR) spectra of the Compton-thick Seyfert 2 galaxy NGC 3281, obtained with the Thermal-Region Camera Spectrograph at the Gemini-South telescope. The spectra present a very deep silicate absorption at 9.7 mu m, and [S IV] 10.5 mu m and [Ne II] 12.7 mu m ionic lines, but no evidence of polycyclic aromatic hydrocarbon emission. We find that the nuclear optical extinction is in the range 24 mag <= A(V) <= 83 mag. A temperature T = 300 K was found for the blackbody dust continuum component of the unresolved 65 pc nucleus and the region at 130 pc SE, while the region at 130 pc NW reveals a colder temperature (200 K). We describe the nuclear spectrum of NGC 3281 using a clumpy torus model that suggests that the nucleus of this galaxy hosts a dusty toroidal structure. According to this model, the ratio between the inner and outer radius of the torus in NGC 3281 is R(0)/R(d) = 20, with 14 clouds in the equatorial radius with optical depth of tau(V) = 40 mag. We would be looking in the direction of the torus equatorial radius (i = 60 degrees), which has outer radius of R(0) similar to 11 pc. The column density is N(H) approximate to 1.2 x 10(24) cm(-2) and the iron K alpha equivalent width (approximate to 0.5-1.2 keV) is used to check the torus geometry. Our findings indicate that the X-ray absorbing column density, which classifies NGC 3281 as a Compton-thick source, may also be responsible for the absorption at 9.7 mu m providing strong evidence that the silicate dust responsible for this absorption can be located in the active galactic nucleus torus.
Resumo:
The goal of this paper is study the global solvability of a class of complex vector fields of the special form L = partial derivative/partial derivative t + (a + ib)(x)partial derivative/partial derivative x, a, b epsilon C(infinity) (S(1) ; R), defined on two-torus T(2) congruent to R(2)/2 pi Z(2). The kernel of transpose operator L is described and the solvability near the characteristic set is also studied. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We study the Fucik spectrum of the Laplacian on a two-dimensional torus T(2). Exploiting the invariance properties of the domain T(2) with respect to translations we obtain a good description of large parts of the spectrum. In particular, for each eigenvalue of the Laplacian we will find an explicit global curve in the Fucik spectrum which passes through this eigenvalue; these curves are ordered, and we will show that their asymptotic limits are positive. On the other hand, using a topological index based on the mentioned group invariance, we will obtain a variational characterization of global curves in the Fucik spectrum; also these curves emanate from the eigenvalues of the Laplacian, and we will show that they tend asymptotically to zero. Thus, we infer that the variational and the explicit curves cannot coincide globally, and that in fact many curve crossings must occur. We will give a bifurcation result which partially explains these phenomena. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We show a scenario of a two-frequeney torus breakdown, in which a global bifurcation occurs due to the collision of a quasi-periodic torus T(2) with saddle points, creating a heteroclinic saddle connection. We analyze the geometry of this torus-saddle collision by showing the local dynamics and the invariant manifolds (global dynamics) of the saddle points. Moreover, we present detailed evidences of a heteroclinic saddle-focus orbit responsible for the type-if intermittency induced by this global bifurcation. We also characterize this transition to chaos by measuring the Lyapunov exponents and the scaling laws. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We present a non-linear symplectic map that describes the alterations of the magnetic field lines inside the tokamak plasma due to the presence of a robust torus (RT) at the plasma edge. This RT prevents the magnetic field lines from reaching the tokamak wall and reduces, in its vicinity, the islands and invariant curve destruction due to resonant perturbations. The map describes the equilibrium magnetic field lines perturbed by resonances created by ergodic magnetic limiters (EMLs). We present the results obtained for twist and non-twist mappings derived for monotonic and non-monotonic plasma current density radial profiles, respectively. Our results indicate that the RT implementation would decrease the field line transport at the tokamak plasma edge. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The authors study the coincidence theory for pairs of maps from the Torus to the Klein bottle. Reidemeister classes and the Nielsen number are computed, and it is shown that any given pair of maps satisfies the Wecken property. The 1-parameter Wecken property is studied and a partial negative answer is derived. That is for all pairs of coincidence free maps a countable family of pairs of maps in the homotopy class is constructed such that no two members may be joined by a coincidence free homotopy.
Resumo:
The median palatine cyst is a rare benign nonodontogenic lesion that attacks the median palatine suture. There is controversy about its pathogenesis; however, its origin is generally attributed to the enclavement of epithelial remnants within the palatine suture between the 2 lateral maxillary processes during their fusion in the origin of the hard palate. The purpose of this report was to relate a case of a median palatine cyst, discussing the rarity of the lesion, its pathogenesis, and the different modalities that could be used for the correct treatment of this pathologic entity.
Resumo:
In order to examine the effects of alcohol on the hard palatine mucosa of rats, sixty adult female rats (Rattus norvegicus albinus) were divided into two experimental groups. The control group received solid diet (Purina rat chow) and tap water ad libitum. The alcoholic group received the same solid diet and was allowed to drink only sugar cane brandy dissolved in 30% Gay Lussac (v/v). At the end of periods of 90, 180 and 270 days of treatment, the animals at estro were sacrificed and the hard palatine mucosa were prepared for TEM and SEM methods. The basal cells of the alcoholic groups (90, 180 and 270 days of treatment) demonstrated some alterations: the intercellular spaces between these cells were higher, presented cytoplasmatic lipid droplets and autolysis. Also, the connective tissue showed intense lipid droplets accumulation in the alcoholic groups. These modifications suggested that chronic alcohol ingestion was able to modify the integrity of the cells in the rat hard palatine mucosa.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this Letter a topological interpretation for the string thermal vacuum in the thermo field dynamics (TFD) approach is given. As a consequence, the relationship between the imaginary time and TFD formalisms is achieved when both are used to study closed strings at finite temperature. The TFD approach starts by duplicating the system's degrees of freedom, defining an auxiliary (tilde) string. In order to lead the system to finite temperature a Bogoliubov transformation is implemented. We show that the effect of this transformation is to glue together the string and the tilde string to obtain a torus. The thermal vacuum appears as the boundary state for this identification. Also, from the thermal state condition, a Kubo-Martin-Schwinger condition for the torus topology is derived. © 2005 Elsevier B.V. All rights reserved.
Resumo:
In the present work, we quantify the fraction of trajectories that reach a specific region of the phase space when we vary a control parameter using two symplectic maps: one non-twist and another one twist. The two maps were studied with and without a robust torus. We compare the obtained patterns and we identify the effect of the robust torus on the dynamical transport. We show that the effect of meandering-like barriers loses importance in blocking the radial transport when the robust torus is present.
Resumo:
In this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus T-n. Set congruent to Z(pk1)(h1) x Z(pk2)(h2) x...x Z(pkr)(hr), r >= 1, k(1) >= k(2) >=...>= k(r) >= 1, p prime. Suppose that the group H acts freely on T-n and the induced representation on pi(1)(T-n) congruent to Z(n) is faithful and has first Betti number b. We show that the numbers n, p, b, k(i) and h(i) (i = 1,..,r) satisfy some relation. In particular, when H congruent to Z(p)(h), the minimum value of n is phi(p) + b when b >= 1. Also when H congruent to Z(pk1) x Z(p) the minimum value of n is phi(p(k1)) + p - 1 + b for b >= 1. Here phi denotes the Euler function.
Resumo:
The main purpose of this work is to study fixed points of fiber-preserving maps over the circle S-1 for spaces which axe fibrations over S-1 and the fiber is the torus T. For the case where the fiber is a surface with nonpositive Euler characteristic, we establish general algebraic conditions, in terms of the fundamental group and the induced homomorphism, for the existence of a deformation of a map over S-1 to a fixed point, free map. For the case where the fiber is a torus, we classify all maps over S-1 which can be deformed fiberwise to a fixed point free map.