935 resultados para pairing correlation
Resumo:
Objective: Simvastatin has been shown to enhance osseointegration of pure titanium implants in osteoporotic rats. This study aimed to evaluate the relationship between the serum level of bone formation markers and the osseointegration of pure titanium implants in osteoporotic rats treated with simvastatin. Materials and methods: Fifty-four female Sprague Dawley rats, aged 3 months old, were randomly divided into three groups: Sham-operated group (SHAM; n=18), ovariectomized group (OVX; n=18), and ovariectomized with Simvastatin treatment group (OVX+SIM; n=18). Fifty-six days after ovariectomy, screw-shaped titanium implants were inserted into the tibiae. Simvastatin was administered orally at 5mg/kg each day after the placement of the implant in the OVX+SIM group. The animals were sacrificed at either 28 or 84 days after implantation and the undecalcified tissue sections were processed for histological analysis. Total alkaline phosphatase (ALP), bone specific alkaline phosphatase (BALP) and bone Gla protein (BGP) were measured in all animal sera collected at the time of euthanasia and correlated with the histological assessment of osseointegration. Results: The level of ALP in the OVX group was higher than the SHAM group at day 28, with no differences between the three groups at day 84. The level of BALP in the OVX+SIM group was significantly higher than both OVX and SHAM groups at days 28 and 84. Compared with day 28, the BALP level of all three groups showed a significant decrease at day 84. There were no significant differences in BGP levels between the three groups at day 28, but at day 84 the OVX+SIM group showed significantly higher levels than both the OVX and SHAM groups. There was a significant increase in BGP levels between days 28 and 84 in the OVX+SIM group. The serum bone marker levels correlated with the histological assessment showing reduced osseointegration in the OVX compared to the SHAM group which is subsequently reversed in the OVX+SIM group.
Resumo:
This paper outlines a study to determine the correlation between the LA10(18hour) and other road traffic noise indicators. It is based on a database comprising of 404 measurement locations including 947 individual days of valid noise measurements across numerous circumstances taken between November 2001 and November 2007. This paper firstly discusses the need and constraints on the indicators and their nature of matching a suitable indicator to the various road traffic noise dynamical characteristics. The paper then presents a statistical analysis of the road traffic noise monitoring data, correlating various indicators with the LA10(18hour) statistical indicator and provides a comprehensive table of linear correlations. There is an extended analysis on relationships across the night time period. The paper concludes with a discussion on the findings.
Resumo:
Seat pressure is known as a major factor of seat comfort in vehicles. In passenger vehicles, there is lacking research into the seat comfort of rear seat occupants. As accurate seat pressure measurement requires significant effort, simulation of seat pressure is evolving as a preferred method. However, analytic methods are based on complex finite element modeling and therefore are time consuming and involve high investment. Based on accurate anthropometric measurements of 64 male subjects and outboard rear seat pressure measurements in three different passenger vehicles, this study investigates if a set of parameters derived from seat pressure mapping are sensitive enough to differentiate between different seats and whether they correlate with anthropometry in linear models. In addition to the pressure map analysis, H-Points were measured with a coordinate measurement system based on palpated body landmarks and the range of H-Point locations in the three seats is provided. It was found that for the cushion, cushion contact area and cushion front area/force could be modeled by subject anthropometry,while only seatback contact area could be modeled based on anthropometry for all three vehicles. Major differences were found between the vehicles for other parameters.
Resumo:
The study presents a multi-layer genetic algorithm (GA) approach using correlation-based methods to facilitate damage determination for through-truss bridge structures. To begin, the structure’s damage-suspicious elements are divided into several groups. In the first GA layer, the damage is initially optimised for all groups using correlation objective function. In the second layer, the groups are combined to larger groups and the optimisation starts over at the normalised point of the first layer result. Then the identification process repeats until reaching the final layer where one group includes all structural elements and only minor optimisations are required to fine tune the final result. Several damage scenarios on a complicated through-truss bridge example are nominated to address the proposed approach’s effectiveness. Structural modal strain energy has been employed as the variable vector in the correlation function for damage determination. Simulations and comparison with the traditional single-layer optimisation shows that the proposed approach is efficient and feasible for complicated truss bridge structures when the measurement noise is taken into account.
Resumo:
Forecasts of volatility and correlation are important inputs into many practical financial problems. Broadly speaking, there are two ways of generating forecasts of these variables. Firstly, time-series models apply a statistical weighting scheme to historical measurements of the variable of interest. The alternative methodology extracts forecasts from the market traded value of option contracts. An efficient options market should be able to produce superior forecasts as it utilises a larger information set of not only historical information but also the market equilibrium expectation of options market participants. While much research has been conducted into the relative merits of these approaches, this thesis extends the literature along several lines through three empirical studies. Firstly, it is demonstrated that there exist statistically significant benefits to taking the volatility risk premium into account for the implied volatility for the purposes of univariate volatility forecasting. Secondly, high-frequency option implied measures are shown to lead to superior forecasts of the intraday stochastic component of intraday volatility and that these then lead on to superior forecasts of intraday total volatility. Finally, the use of realised and option implied measures of equicorrelation are shown to dominate measures based on daily returns.
Resumo:
As a part of vital infrastructure and transportation network, bridge structures must function safely at all times. Bridges are designed to have a long life span. At any point in time, however, some bridges are aged. The ageing of bridge structures, given the rapidly growing demand of heavy and fast inter-city passages and continuous increase of freight transportation, would require diligence on bridge owners to ensure that the infrastructure is healthy at reasonable cost. In recent decades, a new technique, structural health monitoring (SHM), has emerged to meet this challenge. In this new engineering discipline, structural modal identification and damage detection have formed a vital component. Witnessed by an increasing number of publications is that the change in vibration characteristics is widely and deeply investigated to assess structural damage. Although a number of publications have addressed the feasibility of various methods through experimental verifications, few of them have focused on steel truss bridges. Finding a feasible vibration-based damage indicator for steel truss bridges and solving the difficulties in practical modal identification to support damage detection motivated this research project. This research was to derive an innovative method to assess structural damage in steel truss bridges. First, it proposed a new damage indicator that relies on optimising the correlation between theoretical and measured modal strain energy. The optimisation is powered by a newly proposed multilayer genetic algorithm. In addition, a selection criterion for damage-sensitive modes has been studied to achieve more efficient and accurate damage detection results. Second, in order to support the proposed damage indicator, the research studied the applications of two state-of-the-art modal identification techniques by considering some practical difficulties: the limited instrumentation, the influence of environmental noise, the difficulties in finite element model updating, and the data selection problem in the output-only modal identification methods. The numerical (by a planer truss model) and experimental (by a laboratory through truss bridge) verifications have proved the effectiveness and feasibility of the proposed damage detection scheme. The modal strain energy-based indicator was found to be sensitive to the damage in steel truss bridges with incomplete measurement. It has shown the damage indicator's potential in practical applications of steel truss bridges. Lastly, the achievement and limitation of this study, and lessons learnt from the modal analysis have been summarised.
Resumo:
We consider a joint relay selection and subcarrier allocation problem that minimizes the total system power for a multi-user, multi-relay and single source cooperative OFDM based two hop system. The system is constrained to all users having a specific subcarrier requirement (user fairness). However no specific fairness constraints for relays are considered. To ensure the optimum power allocation, the subcarriers in two hops are paired with each other. We obtain an optimal subcarrier allocation for the single user case using a similar method to what is described in [1] and modify the algorithm for multiuser scenario. Although the optimality is not achieved in multiuser case the probability of all users being served fairly is improved significantly with a relatively low cost trade off.
Resumo:
Stronger investor interest in commodities may create closer integration with conventional asset markets. We estimate sudden and gradual changes in correlation between stocks, bonds and commodity futures returns driven by observable financial variables and time, using double smooth transition conditional correlation (DSTCC–GARCH) models. Most correlations begin the 1990s near zero but closer integration emerges around the early 2000s and reaches peaks during the recent crisis. Diversification benefits to investors across equity, bond and stock markets were significantly reduced. Increases in VIX and financial traders’ short open interest raise futures returns volatility for many commodities. Higher VIX also increases commodity returns correlation with equity returns for about half the pairs, indicating closer integration.
Resumo:
Two different morphologies of nanotextured molybdenum oxide were deposited by thermal evaporation. By measuring their field emission (FE) properties, an enhancement factor was extracted. Subsequently, these films were coated with a thin layer of Pt to form Schottky contacts. The current-voltage (I-V) characteristics showed low magnitude reverse breakdown voltages, which we attributed to the localized electric field enhancement. An enhancement factor was obtained from the I-V curves. We will show that the enhancement factor extracted from the I-V curves is in good agreement with the enhancement factor extracted from the FE measurements.
Resumo:
The generation of a correlation matrix from a large set of long gene sequences is a common requirement in many bioinformatics problems such as phylogenetic analysis. The generation is not only computationally intensive but also requires significant memory resources as, typically, few gene sequences can be simultaneously stored in primary memory. The standard practice in such computation is to use frequent input/output (I/O) operations. Therefore, minimizing the number of these operations will yield much faster run-times. This paper develops an approach for the faster and scalable computing of large-size correlation matrices through the full use of available memory and a reduced number of I/O operations. The approach is scalable in the sense that the same algorithms can be executed on different computing platforms with different amounts of memory and can be applied to different problems with different correlation matrix sizes. The significant performance improvement of the approach over the existing approaches is demonstrated through benchmark examples.
Resumo:
We define a pair-correlation function that can be used to characterize spatiotemporal patterning in experimental images and snapshots from discrete simulations. Unlike previous pair-correlation functions, the pair-correlation functions developed here depend on the location and size of objects. The pair-correlation function can be used to indicate complete spatial randomness, aggregation or segregation over a range of length scales, and quantifies spatial structures such as the shape, size and distribution of clusters. Comparing pair-correlation data for various experimental and simulation images illustrates their potential use as a summary statistic for calibrating discrete models of various physical processes.
Resumo:
The quality of dried food is affected by a number of factors including quality of raw material, initial microstructure, and drying conditions. The structure of the food materials goes through deformations due to the simultaneous effect of heat and mass transfer during the drying process. Shrinkage and changes in porosity, microstructure and appearance are some of the most remarkable features that directly influence overall product quality. Porosity and microstructure are the important material properties in relation to the quality attributes of dried foods. Fractal dimension (FD) is a quantitative approach of measuring surface, pore characteristics, and microstructural changes [1]. However, in the field of fractal analysis, there is a lack of research in developing relationship between porosity, shrinkage and microstructure of different solid food materials in different drying process and conditions [2-4]. Establishing a correlation between microstructure and porosity through fractal dimension during convective drying is the main objective of this work.