857 resultados para pacs: human aspacts of it


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last few decades, coral reefs have become a disappearing feature of tropical marine environments, and those reefs that do remain are severely threatened. It is understood that humans have greately altered the environment under which these ecosystems previously have thrived and evoloved. Overharvesting of fish stocks, global warming and pollution are some of the most prominent threats, acting on coral reefs at several spatial and temporal scales. Presently, it is common that coral reefs have been degraded into alternative ecosystem regimes, such as macroalgae-dominated or sea urchin-barren. Although these ecosystems could potentially return to coral dominance in a long-term perspective, when considdering current conditions, it seems likely that they will persist in their degraded states. Thus, recovery of coral reefs cannot be taken for granted on a human timescale. Multiple stressors and disturbances, which are increasingly characteristic of coral reef environments today, are believed to act synergistically and produce ecological surprises. However, current knowledge of effects of compounded disturbances and stress is limited. Based on five papers, this thesis investigates the sublethal response of multiple stressors on coral physiology, as well as the effects of compounded stress and disturbance on coral reef structure and function. Adaptive responses to stress and disturbance in relation to prior experience are highlighted. The thesis further explores how inherent characteristics (traits) of corals and macroalgae may influence regime expression when faced with altered disturbance regimes, in particular overfishing, eutrophication, elevated temperature, and enhanced substrate availability. Finally, possibilities of affecting the resilience of macroalgae-dominaed reefs and shifting the community composition towards a coral-dominated regime are explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In patients with coronary artery disease, the size of myocardial infarction mainly determines the subsequent clinical outcome. Accordingly, it is the primary strategy to decrease cardiovascular mortality by minimizing infarct size. Promotion of collateral artery growth (arteriogenesis) is an appealing option of reducing infarct size. It has been demonstrated in experimental models that tangential fluid shear stress is the major trigger of arterial remodeling and, thus, of collateral growth. Lower-leg, high-pressure external counterpulsation triggered to occur during diastole induces a flow velocity signal and thus tangential endothelial shear stress in addition to the flow signal caused by cardiac stroke volume. We here present two cases of cardiac transplant recipients as human "models" of physical coronary arteriogenesis, providing an example of progressing and regressing clinical arteriogenesis, and review available evidence from clinical studies on other feasible forms of physical arteriogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To ascertain the consequences of pancreas transplantation with systemic venous drainage on glucose homeostasis and insulin secretion, glucose and insulin responses to intravenous glucose were compared in 10 recipients and 15 normal control subjects. There were no differences in fasting glucose levels or intravenous glucose disappearance rates. However, basal insulin levels and acute insulin responses to glucose were threefold greater in the recipients. It is not clear whether this consequence of hyperinsulinemia in the recipients is due to the abnormal circulatory drainage, the lack of autonomic input, or concurrent immunosuppressive drug therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of tumor suppressor function in the multistep process of carcinogenesis was studied in the human teratocarcinoma cell line PA-1. Early passage PA-1 cells ($<$P100) are preneoplastic while late passage ($>$P100) PA-1 cells are spontaneously transformed. Previous work demonstrated a causal role for the N-ras oncogene in the neoplastic transformation of this cell line and the gene was cloned. A clonal cell line established at passage 40 has been shown to suppress the neoplastic transformation potential of the PA-1 N-ras oncogene in gene transfer experiments. This phenotype has been termed SRT+ for suppression of ras transformation. A clonal cell line established at passage 63 is neoplastically transformed by the N-ras in similar gene transfer experiments and is regarded as srt$-$. Somatic cell hybrids were formed between the SRT+ cell and two different N-ras transformed srt$-$ cells. The results indicate that five of the seven independent hybrid clones, and all 14 subclones, failed to form tumors in the nude mouse tumor assay. Chromosomal analysis of rare neoplastic segregants which arose from suppressed hybrid populations demonstrate that the general loss of chromosomes correlates with the reemergence of neoplastic transformation. Karyotype analyses demonstrate a statistically correlative loss of chromosomes 1, 4, 19, and to a lesser extent 11, 14, and 16. DNA hybridization analysis demonstrates a single copy of the intact N-ras oncogene in parental cells, suppressed hybrids, and neoplastically transformed hybrids. These results indicate that functional ras transformation suppression is a trans-dominant trait which may be controlled by sequences residing on particular chromosomes in the human genome. Furthermore, the suppression of ras transformation results from a unique step in the multistep process of carcinogenesis that is different from the induction of immortality. Thus, the neoplastic process of the PA-1 cell line involves at least three steps: (1) induction of immortality, (2) activation of the N-ras oncogene, and (3) loss of tumor suppressor function. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genes of the basic helix-loop-helix transcription factor family have been implicated in many different developmental processes from neurogenesis to myogenesis. The recently cloned bHLH transcription factor, paraxis, has been found to be expressed in the paraxial mesoderm of the mouse suggesting a role for paraxis in the development of this mesodermal subtype which gives rise to the axial muscle, skeleton, and dermis of the embryo. In order to perform in vivo gain of function assays and obtain a better understanding of the possible roles of paraxis in mesodermal and somitic development, we have successfully identified homologues of paraxis in the frog, Xenopus laevis, where the process of mesodermal induction and development is best understood. The two homologues, Xparaxis-a and Xparaxis-b, are conserved with respect to their murine homologue in structure and expression within the embryo. Xparaxis genes are expressed immediately after gastrulation in the paraxial mesoderm of Xenopus embryos and are down regulated in the myotome of the mature somite with continued expression in the undifferentiated dermatome. Overexpression of Xparaxis-b in Xenopus embryos caused defects in the organization and morphology of the somites. This effect was not dependent on DNA binding of Xparaxis but is likely due to its dimerization with other bHLH factors. Co-injections with XE12 did not diminish the effects indicating that the defects were not the result of limiting amounts of XE12. We also demonstrated that Xparaxis does not cause obvious defects in the cell adhesions and movements required for proper mesoderm patterning during gastrulation. The paraxis proteins also lacked the ability to activate transcription as GAL4 fusion proteins in a GAL4 reporter assay, indicating that the genes may function more as modulators of the activity of dimerization partners than as positively acting cell determination factors. In agreement with this, Xparaxis is regulated in response to other pathways of bHLH gene action, in that XE12 can activate Xparaxis-b, in vivo. In addition we show regulation of Xparaxis in response to mMyoD induced myogenesis pathways, again suggesting Xparaxis plays an important role in the patterning and organization of the paraxial mesoderm. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amplification or overexpression of HER-2/neu has been demonstrated in human cancers of the ovary, breast, lung and correlated with chemoresistance and poor clinic prognosis. We have previously found that the adenovirus type 5 early region 1A (E1A) gene product can repress the overexpression and suppress the tumorigenic potential of HER-2/neu-overexpressing cancer cells. In addition, E1A has been reported to induce apoptosis and inhibit the metastatic potential of tumor cells. Therefore, E1A could be considered as a tumor suppressor gene in HER-2/neu-overexpressing cancer cells. To develop an efficient HER-2/neu-targeting gene therapy with E1A, adenoviral vector or cationic liposome was used to introduce E1A into human ovarian, breast and lung cancer cells. Successful therapeutic effects were achieved.^ A replication-deficient adenovirus containing the E1A gene, Ad.E1A(+), was used to infect HER-2/neu-overexpressing human ovarian cancer cell line. Ovarian cancer growth in vitro and colony formation in soft agarose were greatly inhibited.^ To examine tumor suppressor function of E1A in breast cancer, we introduced E1A in vitro by adenovirus into both HER-2/neu-overexpressing and low-expressing human breast cancer cell lines. In HER-2/neu-overexpressing cells, E1A greatly inhibited tumor cell growth in vitro and colony formation in soft agarose. However, in low HER-2/neu expressing cancer cell lines, E1A could only reduce colony formation in soft agarose but had no significant effect on cell growth in monolayer, indicating different effects of E1A in these two types of cancer cells. To test the local therapeutic efficacy of E1A, we used either adenovirus- or liposome-mediated E1A gene delivery systems in an orthotopic breast cancer animal model.^ To test the therapeutic efficacy of systemically-delivered E1A in vivo lung cancer, we treated mice bearing intratracheal lung cancer by i.v. tail injections of Ad.E1A(+). As a result, Ad.E1A(+) suppressed HER-2/neu overexpression and inhibited intratracheal lung cancer growth. However, no significant tumor suppression effect of Ad.E1A(+) was observed in mice bearing HER-2/neu low expressing cell line when the same therapeutic procedure was followed. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PAX6 is a transcription activator that regulates eye development in animals ranging from Drosophila to human. The C-terminal region of PAX6 is proline/serine/threonine-rich (PST) and functions as a potent transactivation domain when attached to a heterologous DNA-binding domain of the yeast transcription factor, GAL4. The PST region comprises 152 amino acids encoded by four exons. The transactivation function of the PST region has not been defined and characterized in detail by in vitro mutagenesis. I dissected the PST domain in two independent systems, a heterologous system using a GAL4 DNA-binding site and the native system of PAX6. In both systems, the results show consistently that all four constituent exons of the PST domain are responsible for the transactivation function. The four exon fragments act cooperatively to stimulate transcription, although none of them can function individually as an independent transactivation domain. Combinations of two or more exon fragments can reconstitute substantial transactivation activity when fused to the DNA-binding domain of GAL4, but they surprisingly do not produce much activity in the context of native PAX6 even though the mutant PAX6 proteins are stable and their DNA-binding function remains unaffected. I conclude that the PAX6 protein contains an unusually large transactivation domain that is evolutionarily conserved to a high degree, and that its full transactivation activity relies on the cooperative action of the four exon fragments.^ Most PAX6 mutations detected in patients with aniridia result in truncations of the protein. Some of the truncation mutations occur in the PST region of PAX6, resulting in mutant proteins that retain their DNA-binding ability but have no significant transactivation activity. It is not clear whether such mutants are true loss-of-function or dominant-negative mutants. I show that these mutants are dominant-negative if they are coexpressed with wild-type PAX6 in cultured cells and that the dominant-negative effects result from enhanced DNA-binding ability of these mutants due to removal of the PST domain. These mutants are able to repress the wild-type PAX6 activity not only at target genes with paired domain binding sites but also at target genes with homeodomain binding sites.^ Mutations in the human PAX6 gene produce various phenotypes, including aniridia, Peters' anomaly, autosomal dominant keratitis, and familial foveal dysplasia. The various phenotypes may arise from different mutations in the same gene. To test this theory, I performed a functional analysis of two missense mutations in the paired domain: the R26G mutation reported in a case of Peters' anomaly, and the I87R mutation identified in a patient with aniridia. While both the R26 and the I87 positions are conserved in the paired boxes of all known PAX genes, X-ray crystallography has shown that only R26 makes contact with DNA. I found that the R26G mutant failed to bind a subset of paired domain binding sites but, surprisingly, bound other sites and successfully transactivated promoters containing those sites. In contrast, the I87R mutant had lost the ability to bind DNA at all tested sites and failed to transactivate promoters. My data support the haploinsufficiency hypothesis of aniridia, and the hypothesis that R26G is a hypomorphic allele. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diarrhea disease is a leading cause of morbidity and mortality, especially in children in developing countries. An estimate of the global mortality caused by diarrhea among children under five years of age was 3.3 million deaths per year. Cryptosporidium parvum was first identified in 1907, but it was not until 1970 that this organism was recognized as a cause of diarrhea in calves. Then it was as late as 1976 that the first reported case of human Cryptosporidiosis occurred. This study was conducted to ascertain the risk factors of first symptomatic infection with Cryptosporidium parvum in a cohort of infants in a rural area of Egypt. The cohort was followed from birth through the first year of life. Univariate and multivariate analyses of data demonstrated that infants greater than six months of age had a two-fold risk of infection compared with infants less than six months of age (RR = 2.17; 95% C.I. = 1.01-4.82). When stratified, male infants greater than six months of age were four times more likely to become infected than male infants less than six months of age. Among female infants, there was no difference in risk between infants greater than six months of age and infants less than six months of age. Female infants less than six months of age were twice more likely to become infected than male infants less than six months of age. The reverse occurred for infants greater than six months of age, i.e., male infants greater than six months of age had twice the risk of infection compared to females of the same age group. Further analysis of the data revealed an increased risk of Cryptosporidiosis infection in infants who were attended in childbirth by traditional childbirth attendants compared to infants who were attended by modern childbirth attendants (nurses, trained midwives, physicians) (RR = 4. 18; 95% C.I. = 1.05-36.06). The final risk factor of significance was the number of people residing in the household. Infants in households which housed more than seven persons had an almost two-fold risk of infection compared with infants in homes with fewer than seven persons. Other risk factors which suggested increased risk were lack of education among the mothers, absence of latrines and faucets in the homes, and mud used as building material for walls and floors in the homes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variability in fire regime at the continental scale has primarily been attributed to climate change, often overshadowing the widely potential impact of human activities. However, human ignition modifies the rhythm of fire episodes occurrence (fire frequency), whereas land use alters vegetation composition and fuel load, and thus the amount of biomass burned. It is unclear, however, whether and how humans have exercised a significant influence over fire regimes at continental and millennial scales. Based on sedimentary charcoal records, we use new alternative estimate of fire frequency and biomass burned for the last 16000 years (here after 16 ky) that we evaluate with outputs from climate, vegetation, land use and population models. We find that pronounced regional-scale land use changes in southern Europe at the beginning of the Neolithic (8–6 ky), during the Bronze Age (5–4 ky) and the medieval period (1 ky) caused a doubling of fire frequency compared to the Holocene average (the last 11.5 ky). Despite anthropogenic influences, southern European biomass burned decreased from 7 ky, which is in line both with changes in orbital parameters leading climate cooling and also reductions in biomass availability because of land use. Our study underscores the role of elevation-dependent parameters, and particularly biomass and land management, as major drivers of fire regime variability. Results attest a determinant anthropogenic driving-force on fire regime and a decrease in fire-carbon emissions since 7 ky in Southern Europe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential effects of the E1A gene products on the promoter activities of neu were investigated. Transcription of the neu oncogene was found to be strongly repressed by the E1A gene products and this requires that conserved region 2 of the E1A proteins. The target for E1A repression was localized within a 140 base pair (bp) DNA fragment in the upstream region of the neu promoter. To further study if this transcriptional repression of neu by E1A can inhibit the transforming ability of the neu transformed cells, the E1A gene was introduced into the neu oncogene transformed B104-1-1 cells and developed B-E1A cell lines that express E1A proteins. These B-E1A stable transfectants have reduced transforming activity compared to the parental B104-1-1 cell line and we conclude that E1A can suppress the transformed phenotypes of the neu oncogene transformed cells via transcriptional repression of neu.^ To study the effects of E1A on metastasis, we first introduced the mutation-activated rat neu oncogene into 3T3 cells and showed that both the neu oncogene transformed NIH3T3 cells and Swiss Webster 3T3 cells exhibited metastatic properties in vitro and in vivo, while their parental 3T3 cells did not. Additionally, the neu-specific monoclonal antibody 7.16.4, which can down regulate neu-encoded p185 protein, effectively reduced the metastatic properties induced by neu. To investigate if E1A can reduce the metastatic potential of neu-transformed cells, we also compared the metastatic properties of B-E1A cell lines and B104-1-1 cell. B-E1A cell lines showed reduced invasiveness and lung colonization than the parental neu transformed B104-1-1 cells. We conclude that E1A gene products also have inhibitory effect on the metastatic phenotypes of the neu oncogene transformed cells.^ The product of human retinoblastoma (RB) susceptibility gene has been shown to complex with E1A gene products and is speculated to regulate gene expression. We therefore investigated in E1A-RB interaction might be involved in the regulation of neu oncogene expression. We found that the RB gene product can decrease the E1A-mediated repression of neu oncogene and the E1A binding region of the RB protein is required for the derepression function. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression and/or amplification of HER2/neu is frequently detected in many human cancers. Activation of p185 tyrosine kinase can be achieved by point mutation, overexpression, deletion, and heterodimerization with other class I receptors. In this study I investigated the signal transduction pathways mediating the oncogenic signal of the point mutation-activated rat p185. I demonstrated that tyrosine phosphorylation of Shc and formation of Shc/Grb2 complex correlated to the transformation of NIH3T3 cells caused by the point mutation-activated rat HER2/neu. Furthermore, I observed that association with Shc was severely impaired by deletion of most of the major autophosphorylation sites of the point-mutated p185. The truncated p185 product, however, fully retained its ability to transform NIH3T3 cells, induce Shc tyrosine phosphorylation and Shc/Grb2 complex formation. These results suggest that tyrosine phosphorylation of Shc which allows formation of Shc/Grb2 complex may play an important role in cell transformation induced by the point mutation-activated p185, and that stable binding to mutant p185 may not be necessary for Shc to mediate this signaling pathway.^ Recent studies have suggested that formation of the complex containing Sos, Grb2 and Shc is important in coupling receptor tyrosine kinases to the Ras signaling pathway. To clarify the role of this trimer in the oncogenic signaling of the activated p185, I set out to interfere with the protein-protein interactions in Shc/Grb2/Sos complex by introducing Grb2 mutants with deletions in either amino- ($\Delta$N-Grb2) or carboxyl- ($\Delta$C-Grb2) terminal SH3 domains into B104-1-1 cells derived from NIH3T3 cells that express the point mutation-activated HER-2/neu. I found that the transformed phenotypes of the B104-1-1 cells were largely reversed by expression of the $\Delta$N-Grb2. The effect of the $\Delta$C-Grb2 on phenotypic reversion was much weaker. Biochemical analysis showed that the $\Delta$N-Grb2 was able to associate Shc but not the activated p185 nor Sos, while the $\Delta$C-Grb2 bound to Shc, the activated p185, and Sos. The p185-mediated Ras activation was severely inhibited by the $\Delta$N-Grb2 but not the $\Delta$C-Grb2. Taken together, these data demonstrate that interruption of the interaction between Shc and the endogenous Grb2 by the $\Delta$N-Grb2 is able to impair the oncogenic signaling of the mutation-activated p185, indicating that (i) the $\Delta$N-Grb2 functions as a strong dominant-negative mutant, (ii) Shc/Grb2/Sos pathway plays a major role in mediating the oncogenic signal of the mutation-activated p185. Unlike the $\Delta$N-Grb2, the $\Delta$C-Grb2 appears to be a relatively weak dominant-negative mutant, probably due to its ability to largely fulfill the biological functions of the wild-type Grb2. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon management has gradually gained attention within the overall environmental management and corporate social responsibility agendas. The clean development mechanism, from Kyoto Protocol, was envisioned as connecting carbon market and sustainable development objectives in developing countries. Previous research has shown that this potential is rarely being achieved. The paper explores how the incorporation of the human side into carbon management reinforces its contribution to generate human development in local communities and to improve the company's image. A case study of a Brazilian company is presented, with the results of the application of an analytical model that incorporates the human side and human development. The selected project is an "efficient stoves" programme. "Efficient stoves" are recognised in Brazil as social technologies. Results suggest that the fact that social technologies value the human side of the technology plays a key role when it comes to analysing the co-benefits of the project implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism of mRNA export is a complex issue central to cellular physiology. We characterized previously yeast Gle1p, a protein with a leucine-rich (LR) nuclear export sequence (NES) that is essential for poly(A)+ RNA export in Saccharomyces cerevisiae. To characterize elements of the vertebrate mRNA export pathway, we identified a human homologue of yeast Gle1p and analyzed its function in mammalian cells. hGLE1 encodes a predicted 75-kDa polypeptide with high sequence homology to yeast Gle1p, but hGle1p does not contain a sequence motif matching any of the previously characterized NESs. hGLE1 can complement a yeast gle1 temperature-sensitive export mutant only if a LR-NES is inserted into it. To determine whether hGle1p played a role in nuclear export, anti-hGle1p antibodies were microinjected into HeLa cells. In situ hybridization of injected cells showed that poly(A)+ RNA export was inhibited. In contrast, there was no effect on the nuclear import of a glucocorticoid receptor reporter. We conclude that hGle1p functions in poly(A)+ RNA export, and that human cells facilitate such export with a factor similar to yeast but without a recognizable LR-NES. With hGle1p localized at the nuclear pore complexes, hGle1p is positioned to act at a terminal step in the export of mature RNA messages to the cytoplasm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To get a better understanding of mutagenic mechanisms in humans, we have cloned and sequenced the human homolog of the Saccharomyces cerevisiae REV3 gene. The yeast gene encodes the catalytic subunit of DNA polymerase ζ, a nonessential enzyme that is thought to carry out translesion replication and is responsible for virtually all DNA damage-induced mutagenesis and the majority of spontaneous mutagenesis. The human gene encodes an expected protein of 3,130 residues, about twice the size of the yeast protein (1,504 aa). The two proteins are 29% identical in an amino-terminal region of ≈340 residues, 39% identical in a carboxyl-terminal region of ≈850 residues, and 29% identical in a 55-residue region in the middle of the two genes. The sequence of the expected protein strongly predicts that it is the catalytic subunit of a DNA polymerase of the pol ζ type; the carboxyl-terminal domain possesses, in the right order, the six motifs characteristic of eukaryotic DNA polymerases, most closely resembles yeast pol ζ among all polymerases in the GenBank database, and is different from the human α, δ, and ɛ enzymes. Human cells expressing high levels of an hsREV3 antisense RNA fragment grow normally, but show little or no UV-induced mutagenesis and are slightly more sensitive to killing by UV. The human gene therefore appears to carry out a function similar to that of its yeast counterpart.