996 resultados para p-Nitrophenyl ester


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Folate-targeted poly[(p-nitrophenyl acrylate)-co-(N-isopropylacrylamide)] nanohydrogel (F-SubMG) was loaded with 5-fluorouracil (5-FU) to obtain low (16.3 +/- 1.9 mu g 5-FU/mg F-SubMG) and high (46.8 +/- 3.8 mu g 5-FU/mg F-SubMG) load 5-FU-loaded F-SubMGs. The complete in vitro drug release took place in 8 h. The cytotoxicity of unloaded F-SubMGs in MCF7 and HeLa cells was low; although it increased for high F-SubMG concentration. The administration of 10 mu M 5-FU by 5-FU-loaded F-SubMGs was effective on both cellular types. Cell uptake of F-SubMGs took place in both cell types, but it was higher in HeLa cells because they are folate receptor positive. After subcutaneous administration (28 mg 5-FU/kg b.w.) in Wistar rats, F-SubMGs were detected at the site of injection under the skin. Histological studies indicated that the F-SubMGs were surrounded by connective tissue, without any signs of rejections, even 60 days after injection. Pharmacokinetic study showed an increase in MRT (mean residence time) of 5-FU when the drug was administered by drug-loaded F-SubMGs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel plasminogen activator from Trimeresurus stejnegeri venom (TSV-PA) has been identified and purified to homogeneity. It is a single chain glycoprotein with an apparent molecular weight of 33,000 and an isoelectric point of pH 5.2. It specifically activates plasminogen through an enzymatic reaction. The activation of human native GIu-plasminogen by TSV-PA is due to a single cleavage of the molecule at the peptide bond Arg(561)-Val-(562). Purified TSV-PA, which catalyzes the hydrolysis of several tripeptide p-nitroanilide substrates, does not activate nor degrade prothrombin, factor X, or protein C and does not clot fibrinogen nor show fibrino(geno)lytic activity in the absence of plasminogen. The activity of TSV-PA was readily inhibited by phenylmethanesulfonyl fluoride and by p-nitrophenyl-p-guanidinobenzoate. Oligonucleotide primers designed on the basis of the N-terminal and the internal peptide sequences of TSV-PA were used for the amplification of cDNA fragments by polymerase chain reaction. This allowed the cloning of a full-length cDNA encoding TSV-PA from a cDNA library prepared from the venom glands. The deduced complete amino acid sequence of TSV-PA indicates that the mature TSV-PA protein is composed of 234 amino acids and contains a single potential N-gIycosylation site at Asn(1G1). The sequence of TSV-PA exhibits a high degree of sequence identity with other snake venom proteases: 66% with the protein C activator from Aghistrodon contortrix contortrix venom, 63% with batroxobin, and 60% with the factor V activator from Russell's viper venom. On the other hand, TSV-PA shows only 21-23% sequence similarity with the catalytic domains of u-PA and t-PA. Furthermore, TSV-PA lacks the sequence site that has been demonstrated to be responsible for the interaction of t-PA (KHRR) and u-PA (RRHR) with plasminogen activator inhibitor type 1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rong Gao, Yun Zhang, Qing-Xiong Meng, Wen-Hui Lee, Dong-Sheng Li, Yu-liang Xiong and Wan-Yu Wang. Characterization of three fibrinogenolytic enzymes from Chinese green tree viper (Trimeresurus stejneger ) venom. Toxicon 36, 457-467, 1998.-From the venom of Chinese green tree viper (Trimeresurus stejnegeri), three distinct fibrinogenolytic enzymes: stejnefibrase-l, stejnefibrase-2 and stejnefibrase-3, were purified by gel filtration, ion-exchange chromatography and reverse-phase high-performance chromatograghy (HPLC). SDS-PAGE analysis of those three enzymes showed that they consisted of a single polypeptide chain with mel. wt of -50 000, 31 000 and 32 000, respectively. Like TSV-PA (a specific plasminogen activator) and stejnobin (a fibrinogen-clotting enzyme) purified from the same venom, stejnfibrase-1, -2 and -3 were able to hydrolyze several chromogenic substrate. On the other hand, different from TSV-PA. and stejnobin, stejnefibrase-l, -2 and -3 did not activate plasminogen and did not possess fibrinogen-clotting activity. The three purified enzymes directly degraded fibrinogen to small fragments and rendered it unclottable by thrombin. Stejnefibrase-2 degraded preferentially BE-chain while stejnefibrase-l and -3 cleaved concomitantly Ax and B beta-chains of fibrinogen. None of these proteases degraded the gamma-chain of fibrinogen. When correlated with the loss of clottability of fibrinogen, the most active enzyme was stejnefibrase-l. The activities of the three enzymes were inhibited by phenylmethylsulfonyl fluoride (PMSF) and p-nitrophenyl-p-guanidinobenzoate (NPGB), indicating that like TSV-PA and stejnobin, they are venom serine proteases. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

From the venom of Trimeresurus jerdonii, a distinct thrombin-like enzyme, called jerdonobin. was purified by DEAF A-25 ion-exchange chromatography, Sephadex G-75 gel filtration, and fast protein liquid chromatography (FPLC). SDS-PAGE analysis of this enzyme shows that it consists of a single polypeptide chain with a molecular weight of 38,000. The NH2-terminal amino acid sequence of jerdonobin has great homology with venom thrombin-like enzymes documented. Jerdonobin is able to hydrolyze several chromogenic substrates. The enzyme directly clots fibrinogen with an activity of 217 NIH units/mg, The fibrinopeptides released, identified by HPLC consisted of fibrinopeptide A and a small amount of fibrinopepide B. The activities of the enzyme were inhibited by phenylmethylsulfonyl fluoride (PMSF) and p-nitrophenyl-p-guanidinobenzoate (NPGB). However, metal chelator (EDTA) had no effect on it. indicating it is venom serine protease. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our studies investigated the physico-chemical properties of alkaline phosphatase excreted by D. magna. This cladoceran mainly released alkaline phosphatase, though it also released a small amount of acid phosphatase. The alkaline phosphatase showed a broad pH optimum (8.05-10.0), and had a broad optimum temperature (30-35 degrees C) with a temperature coefficient (Q(10)) of 2.45. The K-m of the enzyme is 0.15 +/- 0.02 mM when p-nitrophenyl phosphate is used as a substrate, and the V-max is 0.43 +/- 0.01 mu M pNP mg(-1) DW h(-1). Even though alkaline phosphatase had been incubated in chloroform saturated with WC medium for 13 days, its activity was 54% that of the original. The enzyme was strongly inactivated by EDTA, and appeared to be zinc dependent. The alkaline phosphatase activity remained constant when D. magna was fed different quantities of Chlorella sp. The sensitivity of D. magna phosphatase activity to phosphate was time-dependent. During the first 16 hrs, the enzyme was insensitive to phosphate addition, after 24 hrs incubation the enzyme became sensitive to phosphate addition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Secondary metabolites produced by water-blooming cyanobacteria in eutrophic waters include some potent hepatotoxins, These compounds also have tumour-promoting properties, attributable to their inhibition and activation of protein phosphatases and kinases respectively. The inhibitory effect of these toxins on protein phosphatases have been employed in a commonly used radiometric assay, involving the use of a P-32-labeled substrate, for the detection and quantitation of these compounds. This paper investigates and describes a colorimetric method in which the activity of protein phosphatase 2A is determined by measuring the rate of colour production from the release of yellow p-nitrophenol using p-nitrophenyl phosphate as the substrate. Results of this study suggest that the colorimetric protein phosphatase inhibition assay is a simple, inexpensive tool for screening substances that may have tumour-promoting characteristics in aquatic systems. The detection limit of the colorimetric method is comparable to the radiometric assay. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present paper reports the synthesis of glycidyl monoether of 4-[(p-nitrophenyl) azo] phenol (GMNA) and crosslinking reaction of GMNA with hexamethylene diisocyanate biuret (HDIB). The Tg of crosslinked polymer was investigated by DSC. The orientation and stability of the poled and crosslinked polymer film were studied by UV-Vis spectra and Maker fringe method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A bacteriocin-producing strain of Lactobacillus paracasei DPC 4715 was used as an adjunct culture in Cheddar cheese in order to control the growth of “wild” nonstarter lactic acid bacteria. No suppression of growth of the indicator strain was observed in the experimental cheese. The bacteriocin produced by Lactobacillus paracasei DPC 4715 was sensitive to chymosin and cathepsin D and it may have been cleaved by the rennet used for the cheese manufactured or by indigenous milk proteases. A series of studies were performed using various microbial adjuncts to influence cheese ripening. Microbacterium casei DPC 5281, Corynebacterium casei DPC 5293 and Corynebacterium variabile DPC 5305 were added to the cheesemilk at level of 109 cfu/ml resulting in a final concentration of 108 cfu/g in Cheddar cheese. The strains significantly increased the level of pH 4.6-soluble nitrogen, total free amino acids after 60 and 180 d of ripening and some individual free amino acids after 180 d. Yarrowia lipolytica DPC 6266, Yarrowia lipolytica DPC 6268 and Candida intermedia DPC 6271 were used to accelerate the ripening of Cheddar cheese. Strains were grown in YG broth to a final concentration of 107 cfu/ml, microfluidized, freeze-dried and added to the curd during salting at level of 2% w/w. The yeasts positively affected the primary, secondary proteolysis and lipolysis of cheeses and had aminopeptidase, dipeptidase, esterase and 5’ phosphodiestere activities that contributed to accelerate the ripening and improve the flavor of cheese. Hafia alvei was added to Cheddar cheesemilk at levels of 107 cfu/ml and 108 cfu/ml and its contribution during ripening was evaluated. The strain significantly increased the level of pH 4.6-soluble nitrogen, total free amino-acids, and some individual free amino-acids of Cheddar cheese, whereas no differences in the urea-polyacrylamide gel electrophoresis (urea-PAGE) electrophoretograms of the cheeses were detected. Hafia alvei also significantly increased the level of some biogenic amines. A low-fat Cheddar cheese was made with Bifidobacterium animalis subsp. lactis, strain BB-12® at level of 108 cfu/ml, as a probiotic adjunct culture and Hi-Maize® 260 (resistant high amylose maize starch) at level of 2% and 4% w/v, as a prebiotic fiber which also played the role of fat replacer. Bifidobacterium BB-12 decreased by 1 log cycle after 60 d of ripening and remained steady at level of ~107 cfu/g during ripening. The Young’s modulus also increased proportionally with increasing levels of Hi-maize. Hencky strain at fracture decreased over ripening and increased with increasing in fat replacer. A cheese based medium (CBM) was developed with the purpose of mimicking the cheese environment at an early ripening stage. The strains grown in CBM showed aminopeptidase activity against Gly-, Arg-, Pro- and Phe-p-nitroanalide, whereas, when grown in MRS they were active against all the substrates tested. Both Lb. danicus strains grown in MRS and in CBM had aminotransferase activity towards aromatic amino acids (Phe and Trp) and also branched-chain amino acids (Leu and Val). Esterase activity was expressed against p-nitrophenyl-acetate (C2), pnitrophenyl- butyrate (C4) and p-nitrophenyl-palmitate (C16) and was significantly higher in CBM than in MRS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphonates are organophosphorus molecules that contain the highly stable C-P bond, rather than the more common, and more labile, C-O-P phosphate ester bond. They have ancient origins but their biosynthesis is widespread among more primitive organisms and their importance in the contemporary biosphere is increasingly recognized; for example phosphonate-P is believed to play a particularly significant role in the productivity of the oceans. The microbial degradation of phosphonates was originally thought to occur only under conditions of phosphate limitation, mediated exclusively by the poorly characterized C-P lyase multienzyme system, under Pho regulon control. However, more recent studies have demonstrated the Pho-independent mineralization by environmental bacteria of three of the most widely distributed biogenic phosphonates: 2-aminoethylphosphonic acid (ciliatine), phosphonoacetic acid, and 2-amino-3-phosphonopropionic acid (phosphonoalanine). The three phosphonohydrolases responsible have unique specificities and are members of separate enzyme superfamilies; their expression is regulated by distinct members of the LysR family of bacterial transcriptional regulators, for each of which the phosphonate substrate of the respective degradative operon serves as coinducer. Previously no organophosphorus compound was known to induce the enzymes required for its own degradation. Whole-genome and metagenome sequence analysis indicates that the genes encoding these newly described C-P hydrolases are distributed widely among prokaryotes. As they are able to function under conditions in which C-P lyases are inactive, the three enzymes may play a hitherto-unrecognized role in phosphonate breakdown in the environment and hence make a significant contribution to global biogeochemical P-cycling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dithymidine-3'-S-phosphorothioate (d(TspT)) has been prepared from a 5'-O-monomethoxytritylthymidine-3'-S- phosphorothioamidite (7) by activation with 5-(p- nitrophenyl)tetrazole in the presence of 3'-O- acetylthymidine. The resulting dinucleoside phosphorothioite is readily oxidised to the corresponding 3'-S-phosphorothioate using either tetrabutylammonium (TBA) perlodate or TBA oxone and has been deprotected under standard conditions to yield d(TspT). This dithymidine phosphate analogue is comparatively resistant to hydrolysis by nuclease P1, but the P-S bond is readily cleaved by aqueous solutions of either iodine or silver nitrate. Dithymidine-3'-S-phosphorodithioate (d[Tsp(s)T] was prepared in an analogous fashion using sulphur to oxidise the intermediate dinucleoside phosphoro thiolte. Absolute stereochemistry has been assigned to the diastereoisomers of d by comparing their physical and chemical properties to those of the dinucleoside phosphorothioates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Techniques for screening porcine samples for antimicrobial residues in the EU usually involve analysis of samples taken post slaughter, and are either time consuming or expensive. Some of the positive test results at this screening stage could be avoided by allowing the animal sufficient withdrawal time following drug treatment. A method is described that can detect the presence of five major antibiotics in porcine urine at concentrations below 1 mu g ml(-1) for each of the compounds. The test uses Bacillus subtilis, which is already widely employed in antimicrobial inhibition assays, and when combined with a colorimetric substrate, p-nitrophenyl-beta-D-glucopyranoside, can detect inhibitory substances within an assay time of four and a half hours. The method, which uses microtitre plate technology, could be developed into a convenient test kit for use at farm level to determine whether animals were still excreting antimicrobials in their urine prior to their submission for slaughter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A sensitive and specific monoclonal ELISA for the determination of tissue bound furazolidone metabolite 3-amino-2-oxazolidinone (AOZ) is described. The procedure enables the detection of AOZ in matrix supernatant after homogenisation, protease treatment, acid hydrolysis and derivatisation of AOZ released from the tissue by o-nitrobenzaldehyde. The formed p-nitrophenyl 3-amino-2-oxazolidinone (NPAOZ) is determined by ELISA calibrated with matrix-matched standards in the concentration range of 0.05-5.0 mu g l(-1). The assay was validated according to criteria set down by Commission Decision 2002/657/EC for the performance and validation of analytical methods for chemical residues. Detection capability, set on the basis of acceptance of no false negative results, was 0.4 mu g kg(-1) for shrimp, poultry, beef and pork muscle. This sensitivity approaches the established confirmatory LC-MS/MS able to quantify tissue-bound AOZ at levels as low as 0.3 mu g kg(-1). An excellent correlation of results obtained by ELISA and LC/MS-MS within the concentration range 0-32.1 mu g kg(-1) was found in the naturally contaminated shrimp samples (r = 0.999, n = 8). A similar con-elation was found for the incurred poultry samples within the concentration range of 0-10.5 mu g kg(-1) (r = 0.99, n = 8). (c) 2005 Elsevier B.V All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Burkholderia cenocepacia, a member of the B. cepacia complex (Bcc), is an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. Tyrosine phosphorylation has emerged as an important post-translational modification modulating the physiology and pathogenicity of Bcc bacteria. Here, we investigated the predicted bacterial tyrosine kinases BCAM1331 and BceF, and the low molecular weight protein tyrosine phosphatases BCAM0208, BceD and BCAL2200 of B. cenocepacia K56-2. We show that BCAM1331, BceF, BCAM0208 and BceD contributed to biofilm formation, while BCAL2200 was required for growth in nutrient-limited conditions. Multiple deletions of either tyrosine kinase or low molecular weight protein tyrosine phosphatases genes resulted in attenuation of B. cenocepacia intramacrophage survival and reduced pathogenicity in the Galleria mellonella larvae infection model. Experimental evidence indicates that BCAM1331 displays a reduced
tyrosine autophosphorylation activity compared to BceF. Using the artificial substrate p-nitrophenyl phosphate, the phosphatase activity of the three low molecular weight protein tyrosine phosphatases demonstrated similar kinetic parameters. However, only BCAM0208 and BceD could dephosphorylate BceF. Further, BCAL2200 becomes tyrosine phosphorylated in vivo and catalyzes its auto-dephosphorylation. Together, our data suggest that despite having similar biochemical activities low molecular weight protein tyrosine phosphatases and tyrosine kinases have both overlapping and specific roles in the physiology of B. cenocepacia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rates of oxidation of three Organic sulphides viz. methyl phenyl sulphide, (P), p -me thoxyphenyl methyl sulphide (M) and methyl p-nitrophenyl sulphide (N). have been obtained in ethanol using MoO-(acac)- as catalyst and Bu OOH as the oxidizing agent. A Hammett plot gave a rho value of -2.1 and the activation energies for the oxidation of P, M and N were estimated to be 63.60, 40.12 and 197.46 Kj mol respectively. The effect of organic sulphide on the oxidation of another sulphide was also ascertained. Positive and negative deviations were observed from the expected slope.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) complement from dormant hazel (Corylus avellana L.) seeds was found to exhibit significant electrophoretic heterogeneity partially attributable to the presence of distinct molecular forms. In axiferous tissue, total acid phosphatase activity increased in a biphasic fashion during chilling, a treatment necessary to alleviate seed dormancy. Three acid phosphatase isozymes were isolated from cotyledons of dormant hazel seeds by successive ammonium sulphate precipitation, size-exclusion, Concanavalin A affinity, cation- and anion-exchange chromatographies resulting in 75-, 389- and 191-fold purification (APase1, APase2, APase3, respectively). The three glycosylated isoforms were isolated to catalytic homogeneity as determined by electrophoretic, kinetic and heat-inactivation studies. The native acid phosphatase complement of hazel seeds had an apparent Mr of 81.5±3.5 kDa as estimated by size-exclusion chromatography, while the determined pI values were 5.1 (APase1), 6.9 (APase2) and 7.3 (APase3). The optimum pH for p-nitrophenyl phosphate hydrolysis was pH 3 (APase1), pH 5.6 (APase2) and pH 6 (APase3). The hazel isozymes hydrolysed a variety of phosphorylated substrates in a non-specific manner, exhibiting low Km and the highest specificity constant (Vmax/Km) for pyrophosphate. They were not primary phytases since they could not initiate phytic acid hydrolysis, while APase2 and APase3 had significant phospho-tyrosine phosphatase activity. Inorganic phosphate was a competitive inhibitor, while activity was significantly impaired in the presence of vanadate and fluoride.