954 resultados para oxygen uptake slow component
Resumo:
This study was designed to test the hypothesis that subjects having faster oxygen uptake (VO(2)) kinetics during off-transients to exercises of severe intensity would obtain the smallest decrement score during a repeated sprint test. Twelve male soccer players completed a graded test, two severe-intensity exercises, followed by 6 min of passive recovery, and a repeated sprint test, consisting of seven 30-m sprints alternating with 20 s of active recovery. The relative decrease in score during the repeated sprint test was positively correlated with time constants of the primary phase for the VO(2) off-kinetics (r = 0.85; p < 0.001) and negatively correlated with the VO(2) peak (r = -0.83; p < 0.001). These results strengthen the link found between VO(2) kinetics and the ability to maintain sprint performance during repeated sprints.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
Estimation of human oxygen uptake (V˙o2) during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human V˙o2 during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its V˙o2 prediction accuracy. Ten healthy male participants' (age 19-48 years) were recruited and their steady-state V˙o2 was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). V˙o2 was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of V˙o2. Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal V˙o2 during exercise (mean bias 1.9 vs. 3.3 mL O2 kg(-1) min(-1)) but it did not affect the accuracy for prediction of maximal V˙o2 (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human V˙o2 during cycling exercise, and it should be considered when predicting oxygen consumption.
Resumo:
We tested the hypothesis that the inability to increase cardiac output during exercise would explain the decreased rate of oxygen uptake (VO2) in recent onset, ischemia-induced heart failure rats. Nine normal control rats and 6 rats with ischemic heart failure were studied. Myocardial infarction was induced by coronary ligation. VO2 was measured during a ramp protocol test on a treadmill using a metabolic mask. Cardiac output was measured with a flow probe placed around the ascending aorta. Left ventricular end-diastolic pressure was higher in ischemic heart failure rats compared with normal control rats (17 ± 0.4 vs 8 ± 0.8 mmHg, P = 0.0001). Resting cardiac index (CI) tended to be lower in ischemic heart failure rats (P = 0.07). Resting heart rate (HR) and stroke volume index (SVI) did not differ significantly between ischemic heart failure rats and normal control rats. Peak VO2 was lower in ischemic heart failure rats (73.72 ± 7.37 vs 109.02 ± 27.87 mL min-1 kg-1, P = 0.005). The VO2 and CI responses during exercise were significantly lower in ischemic heart failure rats than in normal control rats. The temporal response of SVI, but not of HR, was significantly lower in ischemic heart failure rats than in normal control rats. Peak CI, HR, and SVI were lower in ischemic heart failure rats. The reduction in VO2 response during incremental exercise in an ischemic model of heart failure is due to the decreased cardiac output response, largely caused by depressed stroke volume kinetics.
Resumo:
The oxygen uptake efficiency slope (OUES) is a submaximal index incorporating cardiovascular, peripheral, and pulmonary factors that determine the ventilatory response to exercise. The purpose of this study was to evaluate the effects of continuous exercise training and interval exercise training on the OUES in patients with coronary artery disease. Thirty-five patients (59.3±1.8 years old; 28 men, 7 women) with coronary artery disease were randomly divided into two groups: continuous exercise training (n=18) and interval exercise training (n=17). All patients performed graded exercise tests with respiratory gas analysis before and 3 months after the exercise-training program to determine ventilatory anaerobic threshold (VAT), respiratory compensation point, and peak oxygen consumption (peak VO2). The OUES was assessed based on data from the second minute of exercise until exhaustion by calculating the slope of the linear relation between oxygen uptake and the logarithm of total ventilation. After the interventions, both groups showed increased aerobic fitness (P<0.05). In addition, both the continuous exercise and interval exercise training groups demonstrated an increase in OUES (P<0.05). Significant associations were observed in both groups: 1) continuous exercise training (OUES and peak VO2 r=0.57; OUES and VO2 VAT r=0.57); 2) interval exercise training (OUES and peak VO2 r=0.80; OUES and VO2 VAT r=0.67). Continuous and interval exercise training resulted in a similar increase in OUES among patients with coronary artery disease. These findings suggest that improvements in OUES among CAD patients after aerobic exercise training may be dependent on peripheral and central mechanisms.
Resumo:
The slow component of quartz OSL exhibits a high thermal stability, and, in many of the samples studied, a high dose saturation level (several hundreds or, even thousands, of Grays). These properties suggest that the slow component has potential as a long-range dating tool. Initial attempts have been made to obtain equivalent doses for a number of sedimentary samples. Single- and multiple-aliquot techniques were modified for use with the slow component. The results indicate that there is a good potential for sediment dating, particularly for samples of significant age. Experiments concerning the optical resetting of the slow component suggest that, given its slow optical depletion rate, dating may be restricted to aeolian sediments.
Resumo:
OBJETIVO: Determinar a acurácia das variáveis: tempo de escada (tTE), potência de escada (PTE), teste de caminhada (TC6) e volume expiratório forçado (VEF1) utilizando o consumo máximo de oxigênio (VO2máx) como padrão-ouro. MÉTODOS: Os testes foram realizados em 51 pacientes. O VEF1 foi obtido através da espirometria. O TC6 foi realizado em corredor plano de 120m. O TE foi realizado em escada de 6 lances obtendo-se tTE e PTE. O VO2máx foi obtido por ergoespirometria, utilizando o protocolo de Balke. Foram calculados a correlação linear de Pearson (r) e os valores de p, entre VO2máx e variáveis. Para o cálculo da acurácia, foram obtidos os pontos de corte, através da curva característica operacional (ROC). A estatística Kappa (k) foi utilizada para cálculo da concordância. RESULTADOS: Obteve-se as acurácias: tTE - 86%, TC6 - 80%, PTE - 71%, VEF1(L) - 67%, VEF1% - 63%. Para o tTE e TC6 combinados em paralelo, obteve-se sensibilidade de 93,5% e em série, especificidade de 96,4%. CONCLUSÃO: O tTE foi a variável que apresentou a melhor acurácia. Quando combinados o tTE e TC6 podem ter especificidade e sensibilidade próxima de 100%. Estes testes deveriam ser mais usados rotineiramente, especialmente quando a ergoespirometria para a medida de VO2máx não é disponível.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aims of this study were: (1) to verify the validity of previous proposed models to estimate the lowest exercise duration (T (LOW)) and the highest intensity (I (HIGH)) at which VO(2)max is reached (2) to test the hypothesis that parameters involved in these models, and hence the validity of these models are affected by aerobic training status. Thirteen cyclists (EC), eleven runners (ER) and ten untrained (U) subjects performed several cycle-ergometer exercise tests to fatigue in order to determine and estimate T (LOW) (ET (LOW)) and I (HIGH) (EI (HIGH)). The relationship between the time to achieved VO(2)max and time to exhaustion (T (lim)) was used to estimate ET (LOW). EI (HIGH) was estimated using the critical power model. I (HIGH) was assumed as the highest intensity at which VO2 was equal or higher than the average of VO(2)max values minus one typical error. T (LOW) was considered T (lim) associated with I (HIGH). No differences were found in T (LOW) between ER (170 +/- 31 s) and U (209 +/- 29 s), however, both showed higher values than EC (117 +/- 29 s). I (HIGH) was similar between U (269 +/- 73 W) and ER (319 +/- 50 W), and both were lower than EC (451 +/- 33 W). EI (HIGH) was similar and significantly correlated with I-HIGH only in U (r = 0.87) and ER (r = 0.62). ET (LOW) and T (LOW) were different only for U and not significantly correlated in all groups. These data suggest that the aerobic training status affects the validity of the proposed models for estimating I (HIGH).
Resumo:
Evaporative water loss (EWL) and oxygen uptake ((V) over dot o(2)) was measured in two species of tree frogs with cranial co-ossification, Aparasphenodon brunoi and Corythomantis greeningi. Both species use their head to seal the entrance of bromeliads, tree holes or rocky crevices used as shelters. EWL was significantly reduced in sheltered individuals of both species as compared with those exposed nude to desiccation. EWL per unit area through the head surface was significantly lower than the body skin for A. brunoi but not for C., greeningi. EWL per unit surface area through C. greeningi body skin was about 50% that of A. brunoi, indicating a less permeable skin in the former species. The relationship between cranial coossification and EWL is discussed. ((V) over dot o(2)) in A. brunoi was comparable with other anurans of similar size, whereas in C. greeningi, it was lower than predicted from body mass. Moreover, ((V) over dot o(2)), in C. greeningi showed less sensitivity to temperature increase than in A. brunoi. C. greeningi occurs in a drier environment than A. brunoi, and this appears to be reflected in their EWL and ((V) over dot o(2)) characteristics. (C) 1997 Elsevier B.V.
Resumo:
Oxygen uptake of the fossorial blind snake (Typhlops reticulatus) and the semifossorial coral snake (Micrurus ibiboboca) was measured at 20 and 30 degrees C. Oxygen uptake of blind snakes was within the normal range, whereas oxygen uptake of coral snakes was in the lower end of values reported for snakes. The results do not support the hypothesis of reduced oxygen uptake in fossorial reptiles.
Resumo:
The scaling of oxygen uptake was measured along the ontogeny, in the neotropical pitviper Bothrops moojeni. Allometric relationship between oxygen uptake and body mass, quantified for juveniles, sub-adults and adults, showed the same mass coefficient and exponent. The uniformity of mass constants along ontogeny suggests that B. moojeni is energetically homomorphic. Variation in mass seem to be the sole determinant of oxygen uptake, and structural modifications have no effect on the metabolic rate. Applications of the homomorphism principle to assess variations in mass coefficient and exponent for intraspecific analysis of metabolism in reptiles are discussed. B. moojeni had an oxygen consumption in the range reported for viperids, but lower than that for colubrid snakes of similar size. Possible causative reasons for this pattern is discussed.