37 resultados para osteocyte
Resumo:
Piezosurgery is a new and modern technique of bone surgery in implantology. Selective cutting is possible for different ultrasonic frequencies acting only in hard tissues (mineralized), saving vital anatomical structures. With the piezoelectric osteotomy technique, receptor site preparation for implants, autogenous bone graft acquistition (particles and blocks), osteotomy for alveolar bone crest expansion, maxillary sinus lifting, and dental implant removal can be performed accurately and safely, providing excellent clinical and biological results, especially for osteocyte viability. The aim of this review was, through literature review, to present clinical applications of piezosurgery in implant dentistry and outline their advantages and disadvantages over conventional surgical systems. Moreover, this study addressed the biological aspects related to piezosurgery that differentiate it from those of bone tissue approaches. Overall, piezosurgery enables critical operations in simple and fully executable procedures; and effectively, areas that are difficult to access have less risk of soft tissue and neurovascular tissue damage via piezosurgery.
Resumo:
Tissue engineering has special interest in bone tissue aiming at future medical applications Studies have focused on recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins due to the osteogenic properties of rhBMP-2 and the angiogenic characteristic of fraction 1 protein (P-1) extracted from the rubber tree Hevea brasiliensis. Furthermore, heterologous fibrin sealant (FS) has been shown as a promising alternative in regenerative therapies. The aim of this study was to evaluate these substances for the repair of bone defects in rats. A bone defect measuring 3 mm in diameter was created in the proximal metaphysis of the left tibia of 60 rats and was implanted with rhBMP-2 or P-1 in combination with a new heterologous FS derived from snake venom. The animals were divided into six groups: control (unfilled bone defect), rhBMP-2 (defect filled with 5 mu g rhBMP-2), P-1 (defect filled with 5 mu g P-1), FS (defect filled with 8 mu g FS), FS/rhBMP-2 (defect filled with 8 mu g FS and 5 mu g rhBMP-2), FS/P-1 (defect filled with 8 mu g FS and 5 mu g P-1). The animals were sacrificed 2 and 6 weeks after surgery. The newly formed bone projected from the margins of the original bone and exhibited trabecular morphology and a disorganized arrangement of osteocyte lacunae. Immunohistochemical analysis showed intense expression of osteocalcin in all groups. Histometric analysis revealed a significant difference in all groups after 2 weeks (p < 0.05), except for the rhBMP-2 and FS/rhBMP-2 groups (p > 0.05). A statistically significant difference (p < 0.05) was observed in all groups after 6 weeks in relation to the volume of newly formed bone in the surgical area. In conclusion, the new heterologous fibrin sealant was found to be biocompatible and the combination with rhBMP-2 showed the highest osteogenic and osteoconductive capacity for bone healing. These findings suggest a promising application of this combination in the regeneration surgery.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mouse molars undergo distal movement, during which new bone is formed at the mesial side of the tooth root whereas the preexisting bone is resorbed at the distal side of the root. However, there is little detailed information available regarding which of the bones that surround the tooth root are involved in physiological tooth movement. In the present study, we therefore aimed to investigate the precise morphological differences of the alveolar bone between the bone formation side of the tooth root, using routine histological procedures including silver impregnation, as well as by immunohistochemical analysis of alkaline phosphatase and tartrate-resistant acid phosphatase activity, and immunohistochemical analysis of the expression of the osteocyte markers dentin matrix protein 1, sclerostin, and fibroblast growth factor 23. Histochemical analysis indicated that bone formation by osteoblasts and bone resorption by osteoclasts occurred at the bone formation side and the bone resorption side, respectively. Osteocyte marker immunoreactivity of osteocytes at the surface of the bone close to the periodontal ligament differed at the bone formation and bone resorption sides. We also showed different specific features of osteocytic lacunar canalicular systems at the bone formation and bone resorption sides by using silver staining. This study suggests that the alveolar bone is different in the osteocyte nature between the bone formation side and the bone resorption side due to physiological distal movement of the mouse molar.
Resumo:
Deproteinized bovine bone mineral (DBBM) (Bio-Oss®, Geistlich-Pharma, Wohlhusen, Switzerland) is widely used as a bone substitute for the preservation or augmentation of bone volume. After implantation near native bone, new bone may form around the DBBM particles. Since DBBM is very resistant to resorption, it will hardly ever be replaced by bone and, therefore, the mechanical stability largely depends on the extent of bridging between the newly formed bone and the DBBM particles. The molecular factors responsible for the deposition of new bone to the DBBM particles have not been determined. The aim of this study was, therefore, to test the hypothesis that DBBM implanted near bone take up bone-related matrix proteins that are involved in cell-matrix interactions. Cylindrical biopsies harvested from tooth extraction sites filled with DBBM particles were fixed in aldehydes, decalcified, and embedded in LR White resin. Thin sections were incubated with antibodies against bone sialoprotein (BSP) and osteopontin (OPN), two bone proteins involved in cell attachment, signaling, and mineralization. High-resolution immunogold labeling was used to examine protein distribution. BSP and OPN were immunodetected in all DBBM particles and yielded an identical distribution pattern. Most gold particles were found over the peripheral DBBM matrix, although some peripheral regions lacked immunolabeling. The bulk of the interior DBBM portion was mainly free of labeling with the exception of the peripheral matrix of some osteocyte lacunae and canaliculi. It is concluded that DBBM selectively takes up at least BSP and OPN after its implantation at a bone site. BSP and OPN or other molecules accommodating in DBBM may modulate events associated with cell attachment and differentiation.
Resumo:
Bone remodeling depends on the spatial and temporal coupling of bone formation by osteoblasts and bone resorption by osteoclasts; however, the molecular basis of these inductive interactions is unknown. We have previously shown that osteoblastic overexpression of TGF-β2 in transgenic mice deregulates bone remodeling and leads to an age-dependent loss of bone mass that resembles high-turnover osteoporosis in humans. This phenotype implicates TGF-β2 as a physiological regulator of bone remodeling and raises the question of how this single secreted factor regulates the functions of osteoblasts and osteoclasts and coordinates their opposing activities in vivo. To gain insight into the physiological role of TGF-β in bone remodeling, we have now characterized the responses of osteoblasts to TGF-β in these transgenic mice. We took advantage of the ability of alendronate to specifically inhibit bone resorption, the lack of osteoclast activity in c-fos−/− mice, and a new transgenic mouse line that expresses a dominant-negative form of the type II TGF-β receptor in osteoblasts. Our results show that TGF-β directly increases the steady-state rate of osteoblastic differentiation from osteoprogenitor cell to terminally differentiated osteocyte and thereby increases the final density of osteocytes embedded within bone matrix. Mice overexpressing TGF-β2 also have increased rates of bone matrix formation; however, this activity does not result from a direct effect of TGF-β on osteoblasts, but is more likely a homeostatic response to the increase in bone resorption caused by TGF-β. Lastly, we find that osteoclastic activity contributes to the TGF-β–induced increase in osteoblast differentiation at sites of bone resorption. These results suggest that TGF-β is a physiological regulator of osteoblast differentiation and acts as a central component of the coupling of bone formation to resorption during bone remodeling.
Resumo:
International audience