918 resultados para ornamental fish culture systems
Resumo:
Probiotics are currently being investigated for prevention of infections caused by enteric pathogens. The aim of this in vitro study was to evaluate the influence of three single probiotics: Lactobacillus casei NCIMB 30185 (PXN 37), Lactobacillus acidophilus NCIMB 30184 (PXN 35), Bifidobacterium breve NCIMB 30180 (PXN 25) and a probiotic mixture containing the above strains plus twelve other strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera on the survival of Salmonella Typhimurium and Clostridium difficile using pH-controlled anaerobic batch cultures containing mixed fecal bacteria. Changes in relevant bacterial groups and effects of probiotic addition on survival of the two pathogens were assessed over 24 h. Quantitative analysis of bacterial populations revealed that there was a significant increase in lactobacilli and/or bifidobacteria numbers, depending on probiotic addition, compared with the control (no added probiotic). There was also a significant reduction in S. Typhimurium and C. difficile numbers in the presence of certain probiotics compared with controls. Of the probiotic treatments, two single strains namely L. casei NCIMB 30185 (PXN 37), and B. breve NCIMB 30180 (PXN 25) were the most potent in reducing the numbers of S. Typhimurium and C. difficile. In addition, the supplementation with probiotics into the systems influenced some fermentations parameters. Acetate was found in the largest concentrations in all vessels and lactate and formate were generally detected in higher amounts in vessels with probiotic addition compared to controls.
Resumo:
Lactobacillus plantarum C4 has been tested in in vitro pH-controlled anaerobic faecal batch cultures as compared to Lactobacillus rhamnosus GG to determine changes caused to the composition of faecal bacteria. Effects upon major groups of the microbiota and levels of short-chain fatty acids (SCFA) were assessed over 24 h. Concomitantly, hydrophobic character and ability of both bacterial cells to adhere in vitro to Caco-2 cells were investigated. Quantitative analysis of bacterial populations revealed that there was a significant increase in Lactobacillus/Enterococcus numbers in vessels with probiotic supplemented with fructooligosaccharides (FOS), compared to the negative control. L. plantarum C4 showed to have more hydrophilic behaviour and fulfilled better adhesive properties, compared to L. rhamnosus GG. Thus, L. plantarum C4 can modulate the intestinal microbiota in vitro, promoting changes in some numerically and metabolically relevant microbial populations and shifts in the production of SCFA.
Resumo:
Biotechnology can currently be considered of importance in aquaculture. The increase in the production of aquatic organisms over the last two decades through the use of biotechnology indicates that in a few generations biotechnology may overtake conventional techniques, at least for the commercially more valuable species. In the last few years, genetics has contributed greatly to fish culture through the application of the more recent techniques developed in biotechnology and in genetic engineering. At present, the most commonly used methods in fish biotechnology are chromosome manipulation and hormonal treatments, which can be used to produce triploid, tetraploid, haploid, gynogenetic and androgenetic fish. These result in the production of individuals and lineages of sterile, monosex or highly endogamic fish. The use of such strategies in fish culture has as a practical objective the control of precocious sexual maturation in certain species; other uses are the production of larger specimens by control of the reproductive process and the attainment of monosex lines containing only those individuals of greater commercial value. The use of new technologies, such as those involved in gene transfer in many species, can result in modified individuals of great interest to aquaculturists and play important roles in specific programmes of fish production in the near future.
Resumo:
O presente estudo apresenta um levantamento parasitológico de larvas de nematóides de Iguanodectes spilurus capturados no fluxo do Rio Caeté, nordeste do Pará, Brasil. Um total de 176 espécimes com médias de 1,36 ± 0,75 g de peso e 5,53 ± 0,98 cm de comprimento total foram analisados. Foram identificados em 124 peixes os nematóides Capillaria sp., Procamallanus sp. e da família Anisakidae, apresentaram uma prevalência de 70,45% e intensidade de infecção de 1,81 a 4,70 larvas. A maior prevalência foi de 57,38% no fígado, mas não foi observada sazonalidade, indicando alta potência de infecção ao longo do ano. A sazonalidade foi observada em peixes parasitados no intestino, estômago e ceco com prevalência e intensidade média de 17,61% e 2,32 parasitas, 12,5% e 1,81 parasitas, 10,79% e 2,21 parasitas, respectivamente. A maior infecção foi encontrada na estação chuvosa, provavelmente devido ao aumento da disponibilidade de hospedeiros intermediários ou de alimentos.
Resumo:
O objetivo do presente trabalho foi avaliar a fauna parasitária de quatro espécies de peixes ornamentais capturados no rio Chumucuí, no município de Bragança-PA. Foram coletados um total de 307 peixes pertencentes a 4 espécies, sendo elas: Moenkhausia sanctaefilomenae (olho de fogo, n = 23), Carnegiella strigata (borboleta, n = 37), Chilodus punctatus (cabeça-para-baixo, n = 7) e Astyanax bimaculatus (lambari, n = 240) coletados de junho de 2006 a dezembro de 2007. Foram observados 3 taxa parasitando os peixes: monogenéticos nas brânquias, nematóides (larvas de Capillaria sp. e Contracaecum sp.) no trato digestório e fígado e acantocéfalos (Quadrigyrus torquatus, Q. brasiliensis e Q. nickoli) no estômago e intestino. Astyanax bimaculatus apresentou maior prevalência de acantocéfalos na estação chuvosa, menor prevalência de nematóides na estação seca. Discute-se a eventual importância destes parasitas na exportação de peixes ornamentais.
First occurrence of Quadrigyrus nickoli (Acanthocephala) in the ornamental fish Hyphessobrycon eques
Resumo:
O objetivo desse trabalho foi registrar a primeira ocorrência sazonal do acantocefala Quadrigyrus nickoli Schmidt & Hugghins, 1973 (Quadrigyridae) no peixe “Mato Grosso”, Hyphessobrycon eques Steindachner, 1882 (Characidae), capturados no Rio Chumucuí, região Bragantina, Pará, Brasil. Os peixes foram coletados no período de julho∕2006 a junho∕2007 e examinados com técnica padrão para detecção de parasitas. Um total de 75 parasitas foram encontrados no estômago e intestino. Dos 83 peixes capturados (50 na estação seca e 33 na chuvosa), 22 estavam parasitados por cistacantos de Quadrigyrus nickoli. No presente trabalho discute-se a importância do H. eques como hospedeiro paratênico para Quadrigyrus nickoli. Os presentes dados constituem o primeiro estudo sobre a biologia e a infecção de Q. nickoli na Amazônia oriental.
Resumo:
O objetivo do trabalho foi determinar a toxicidade aguda de formalina e os efeitos histopatológicos para o peixe ornamental amazônico corredora bicuda (Corydora melanistius). Foi utilizado um delineamento inteiramente casualizado; com dez concentrações de formalina 40% (0, 3, 6, 12, 25, 50, 100, 150, 200 e 250mg.L-1), com quatro repetições e cinco peixes por recipiente de água (3 L) em sistema estático durante 96 horas. Os peixes moribundos foram mortos e fixados em formol 10% procedendo à análise histopatológica das brânquias e do fígado. Ao final desse experimento, obtiveram-se as seguintes taxas de mortalidades em ordem crescente de exposição (%): 0, 0, 0, 0, 0, 65, 85, 100, 100 e 100. A concentração letal 50% (CL inicial (I)50-96h) foi estimada em 50, 76 mg/L com a seguinte equação de regressão y = 0, 51x com r² = 0, 80. Pode observar nas concentrações mais elevadas, alterações como hiperplasia branquial e fusão lamelar, enquanto que no fígado foi observado desorganização do arranjo cordonal, assim como necrose no rim. Com isso no presente estudo, a formalina pode ser considerada pouco tóxica para a corredora bicuda, mas causa alterações morfológicas acentuadas quando expostas a concentrações elevadas. Dessa forma o uso de formalina no próprio rio de coleta dos peixes com a utilização de dosagens erradas pode causar impactos ambientais e biológicos negativos.
Resumo:
Traditional cell culture models have limitations in extrapolating functional mechanisms that underlie strategies of microbial virulence. Indeed during the infection the pathogens adapt to different tissue-specific environmental factors. The development of in vitro models resembling human tissue physiology might allow the replacement of inaccurate or aberrant animal models. Three-dimensional (3D) cell culture systems are more reliable and more predictive models that can be used for the meaningful dissection of host–pathogen interactions. The lung and gut mucosae often represent the first site of exposure to pathogens and provide a physical barrier against their entry. Within this context, the tracheobronchial and small intestine tract were modelled by tissue engineering approach. The main work was focused on the development and the extensive characterization of a human organotypic airway model, based on a mechanically supported co-culture of normal primary cells. The regained morphological features, the retrieved environmental factors and the presence of specific epithelial subsets resembled the native tissue organization. In addition, the respiratory model enabled the modular insertion of interesting cell types, such as innate immune cells or multipotent stromal cells, showing a functional ability to release pertinent cytokines differentially. Furthermore this model responded imitating known events occurring during the infection by Non-typeable H. influenzae. Epithelial organoid models, mimicking the small intestine tract, were used for a different explorative analysis of tissue-toxicity. Further experiments led to detection of a cell population targeted by C. difficile Toxin A and suggested a role in the impairment of the epithelial homeostasis by the bacterial virulence machinery. The described cell-centered strategy can afford critical insights in the evaluation of the host defence and pathogenic mechanisms. The application of these two models may provide an informing step that more coherently defines relevant molecular interactions happening during the infection.
Resumo:
For the successful integration of bone tissue engineering constructs into patients, an adequate supply with oxygen and nutrients is critical. Therefore, prevascularisation of bone tissue engineering constructs is desirable for bone formation, remodelling and regeneration. Co-culture systems, consisting of human endothelial cells and primary osteoblasts (pOB) as well as osteosarcoma cell lines, represent a promising method for studying the mechanisms involved in the vascularisation of constructs in bone tissue en- gineering and could provide new insights into the molecular and cellular mechanisms that control essential processes during angiogenesis. The present study demonstrated the im- portant components of co-culture systems with a focus on bone tissue replacement and the angiogenic effects of pOB and osteosarcoma cell lines on human endothelial cells. Furthermore, the studies emphasised an overall approach for analysis of signal molecules that are involved in the angiogenic activation of human endothelial cells by the regulation of VEGF-related pathways at the transcriptional and translational levels. The osteosarcoma cell lines Cal-72, MG-63 and SaOS-2, as well as pOB from several donors, differed in their angiogenesis-inducing potential in 2-D and 3-D co-culture systems. SaOS-2 cells appeared to have a high osteogenic differentiation level with no detectable angiogenesis-inducing potential in co-culture with human endothelial cells. The angiogenic potential of the osteoblast-like cells is mainly correlated with the upregulation of essential angiogenic growth factors, such as VEGF, bFGF and HGF and the downregulation of the angiogenesis inhibitor, endostatin. However, other factors involved in angiogenic regulation were found to differ between SaOS-2 cells, compared to Cal-72 and MG-63. The present study focuses on VEGF pathway-effecting genes as key players in the regulation of angiogenesis. The levels of VEGF and VEGF-effecting genes, such as TGF-α and TIMP-2 are down-regulated in SaOS-2 cells. In contrast, direct regulators of VEGF, such as IL6, IL8 and TNF are strongly upregulated, which indicates disruptions in growth factor regulating pathways in SaOS-2 cells. Potential pathways, which could be involved include MEK, PI3K, MAPK, STAT3, AKT or ERK. Additional treatment of co-cultures with single growth factors did not accelerate or improve the angiogenesis-inducing potential of SaOS-2 cells. Knowledge of the detailed molecular mechanisms involved in angiogenesis control will hopefully allow improved approaches to be developed for prevascularisation of bone tissue engineering constructs.
Resumo:
Fish populations are increasingly being subjected to anthropogenic changes to their sensory environments. The impact of these changes on inter- and intra-specific communication, and its evolutionary consequences, has only recently started to receive research attention. A disruption of the sensory environment is likely to impact communication, especially with respect to reproductive interactions that help to maintain species boundaries. Aquatic ecosystems around the world are being threatened by a variety of environmental stressors, causing dramatic losses of biodiversity and bringing urgency to the need to understand how fish respond to rapid environmental changes. Here, we discuss current research on different communication systems (visual, chemical, acoustic, electric) and explore the state of our knowledge of how complex systems respond to environmental stressors using fish as a model. By far the bulk of our understanding comes from research on visual communication in the context of mate selection and competition for mates, while work on other communication systems is accumulating. In particular, it is increasingly acknowledged that environmental effects on one mode of communication may trigger compensation through other modalities. The strength and direction of selection on communication traits may vary if such compensation occurs. However, we find a dearth of studies that have taken a multimodal approach to investigating the evolutionary impact of environmental change on communication in fish. Future research should focus on the interaction between different modes of communication, especially under changing environmental conditions. Further, we see an urgent need for a better understanding of the evolutionary consequences of changes in communication systems on fish diversity.
Resumo:
To determine the potential inhalatory risk posed by carbon nanotubes (CNTs), a tier-based approach beginning with an in vitro assessment must be adopted. The purpose of this study therefore was to compare 4 commonly used in vitro systems of the human lung (human blood monocyte-derived macrophages [MDM] and monocyte-derived dendritic cells [MDDC], 16HBE14o- epithelial cells, and a sophisticated triple cell co-culture model [TCC-C]) via assessment of the biological impact of different CNTs (single-walled CNTs [SWCNTs] and multiwalled CNTs [MWCNTs]) over 24h. No significant cytotoxicity was observed with any of the cell types tested, although a significant (p < .05), dose-dependent increase in tumor necrosis factor (TNF)-α following SWCNT and MWCNT exposure at concentrations up to 0.02mg/ml to MDM, MDDC, and the TCC-C was found. The concentration of TNF-α released by the MDM and MDDC was significantly higher (p < .05) than the TCC-C. Significant increases (p < .05) in interleukin (IL)-8 were also found for both 16HBE14o- epithelial cells and the TCC-C after SWCNTs and MWCNTs exposure up to 0.02mg/ml. The TCC-C, however, elicited a significantly (p < .05) higher IL-8 release than the epithelial cells. The oxidative potential of both SWCNTs and MWCNTs (0.005-0.02mg/ml) measured by reduced glutathione (GSH) content showed a significant difference (p < .05) between each monoculture and the TCC-C. It was concluded that because only the co-culture system could assess each endpoint adequately, that, in comparison with monoculture systems, multicellular systems that take into consideration important cell type-to-cell type interactions could be used as predictive in vitro screening tools for determining the potential deleterious effects associated with CNTs.
Resumo:
"Extracted from U. S. Fish Commission report for 1897, pages 1 to 340, plates 1 to 62 and I to XVIII."