998 resultados para organic components
Resumo:
Seventeen eastern Mediterranean Pliocene sapropels from ODP Sites 964, 966, 967 and 969, some of which are coeval, have been analysed for their geochemistry. The sapropels are characterized by very high organic carbon contents (up to 30%) which are reported to be the result of both increased productivity and improved preservation. Although the organic matter in the sapropels is mainly of marine origin, the d13Corg values and C/N ratios appear "terrestrial". This is the result of anaerobic organic matter degradation which preferentially removed nitrogen- and 13C-rich organic components. A comparison with Ti/Al profiles, which mimic the precession index, and a calculation of organic carbon accumulation rates indicate that sedimentation rates were at most 30% lower or at most 50% higher during sapropel formation. Thus, sapropel formation lasted from between 2000 and 10,000 years at Site 964 to between 4500 and 12,000 years at Site 967. A synthesis of new data and a comparison with existing models indicates that productivity, which increased due to extra nutrients supplied as a result of winter mixing and as a result of enhanced input by the Nile, was the driving mechanism behind sapropel formation. The resulting sapropel formation was simultaneous at different depths, but lasted longer in the part of the basin closest to the Nile.
Resumo:
The reconstruction of ocean history employs a large variety of methods with origins in the biological, chemical, and physical sciences, and uses modern statistical techniques for the interpretation of extensive and complex data sets. Various sediment properties deliver useful information for reconstructing environmental parameters. Those properties that have a close relationship to environmental parameters are called ''proxy variables'' (''proxies'' for short). Proxies are measurable descriptors for desired (but unobservable) variables. Surface water temperature is probably the most important parameter for describing the conditions of past oceans and is crucial for climate modelling. Proxies for temperature are: abundance of microfossils dwelling in surface waters, oxygen isotope composition of planktic foraminifers, the ratio of magnesium or strontium to calcium in calcareous shells or the ratio of certain organic molecules (e.g. alkenones produced by coccolithophorids). Surface water salinity, which is important in modelling of ocean circulation, is much more difficult to reconstruct. At present there is no established method for a direct determination of this parameter. Measurements associated with the paleochemistry of bottom waters to reconstruct bottom water age and flow are made on benthic foraminifers, ostracodes, and deep-sea corals. Important geochemical tracers are d13C and Cd/Ca ratios. When using benthic foraminifers, knowledge of the sediment depth habitat of species is crucial. Reconstructions of productivity patterns are of great interest because of important links to current patterns, mixing of water masses, wind, the global carbon cycle, and biogeography. Productivity is reflected in the flux of carbon into the sediment. There are a number of fluxes other than those of organic carbon that can be useful in assessing productivity fluctuations. Among others, carbonate and opal flux have been used, as well as particulate barite. Furthermore, microfossil assemblages contain clues to the intensity of production as some species occur preferentially in high-productivity regions while others avoid these. One marker for the fertility of sub-surface waters (that is, nutrient availability) is the carbon isotope ratio within that water (13C/12C, expressed as d13C). Carbon isotope ratios in today's ocean are negatively correlated with nitrate and phosphate contents. Another tracer of phosphate content in ocean waters is the Cd/Ca ratio. The correlation between this ratio and phosphate concentrations is quite well documented. A rather new development to obtain clues on ocean fertility (nitrate utilization) is the analysis of the 15N/14N ratio in organic matter. The fractionation dynamics are analogous to those of carbon isotopes. These various ratios are captured within the organisms growing within the tagged water. A number of reconstructions of the partial pressure of CO2 have been attempted using d13C differences between planktic and benthic foraminifers and d13C values of bulk organic material or individual organic components. To define the carbon system in sea water, two elements of the system have to be known in addition to temperature. These can be any combination of total CO2 , alkalinity, or pH. To reconstruct pH, the boron isotope composition of carbonates has been used. Ba patterns have been used to infer the distribution of alkalinity in past oceans. Information relating to atmospheric circulationand climate is transported to the ocean by wind or rivers, in the form of minerals or as plant andanimal remains. The most useful tracers in this respect are silt-sized particles and pollen.
Resumo:
The sea-surface microlayer (SML) is the ocean's uppermost boundary to the atmosphere and in control of climate relevant processes like gas exchange and emission of marine primary organic aerosols (POA). The SML represents a complex surface film including organic components like polysaccharides, pro- teins, and marine gel particles, and harbors diverse microbial communities. Despite the potential relevance of the SML in ocean-atmosphere interactions, still little is known about its structural characteristics and sen- sitivity to a changing environment such as increased oceanic uptake of anthropogenic CO2. Here we report results of a large-scale mesocosm study, indicating that ocean acidification can affect the abundance and activity of microorganisms during phytoplankton blooms, resulting in changes in composition and dynam- ics of organic matter in the SML. Our results reveal a potential coupling between anthropogenic CO2 emis- sions and the biogenic properties of the SML, pointing to a hitherto disregarded feedback process between ocean and atmosphere under climate change.
Resumo:
Las características de heterogeneidad de los residuos sólidos urbanos así como la degradación biológica de sus componentes orgánicos influyen en los aspectos geotécnicos de los vertederos. La magnitud y duración de los asientos son factores muy importantes en el estudio del comportamiento de vertederos. La velocidad de asiento disminuye con el tiempo pero se mantiene durante muchos años después de su clausura. Para reducir los asientos del relleno, uno de los métodos de tratamiento que se utiliza es la compactación dinámica de los residuos sólidos. En este trabajo se estudia la mejora, a través de la compactación dinámica por impacto tipo “Menard”, de un vertedero de residuos sólidos en Madrid y los asientos provocados por la aplicación de una sobrecarga. Se analiza el comportamiento de los residuos sólidos con tratamiento de mejora, así como la predicción de asientos a 10 años aplicando los modelos Sowers (1973), Yen & Scanlon (1975), Gandola et al. (1992) y Meruelo (1994). Heterogonous characteristics of solid urban residues as well as biological decomposition of its organic components affect the geotechnical aspects of the landfills. The magnitude and the duration of the landfill settlement are one of the significant factors in studying the behavior of landfills. Although the rate of the settlement decreases as the time passes, however it is still maintained during many years after its closure. One of the methods used to reduce the settlement waste is through the dynamic consolidation methods of the solid residues. In this work, by applying the “Menard” dynamic consolidation method, we are studying the improvement of solid residue landfill in Madrid and the settlements provoked by overloading. The behavior of the solid residues through the improvement treatments as well as 10 years ahead prediction are analyzed by applying the models by Sowers (1973), Yen & Scanlon (1975), Gandola et al. (1992) and Meruelo (1994).
Resumo:
Selenium content of phosphate material from the ocean bottom ranges from 0.2 to 4.7 mg/kg. Phosphorites of various ages from the Atlantic and Pacific Oceans contain 1.0-2.4 mg/kg of selenium, phosphatized coproliths 0.7-1.2 mg/kg, fish bones 0.2-1,4 mg/kg, and bones of marine mammals 0.5-4.7 mg/kg. Recent diatom muds on the shelf of Namibia are considerably enriched in selenium (12.2-13.8 mg/kg) than phosphorites that form within them. Accumulation of selenium in phosphate material on the ocean bottom results from diagenetic reduction, causing it to be precipitated from liquid phase and to concentrate in organic components and sulfides.
Resumo:
Quantifying the relative contribution of different phosphorus (P) sources to P uptake can lead to greater understanding of the mechanisms that increase available P in integrated P management systems. The P-32-P-33 double isotope labeling technique was used to determine the relative contribution of green manures (GMs) and P fertilizers to P uptake by Setaria grass (Setaria sphacelata) grown in an amended tropical acid soil (Bungor series) in a glasshouse study. The amendments were factorial combinations of GMs (Calopogonium caeruleum , Gliricidia sepium and Imperata cylindrica) and P fertilizers [phosphate rocks (PRs) from North Carolina (NCPR), China (CPR) and Algeria (APR), and triple superphosphate (TSP)]. Dry matter yield, P uptake, and P utilization from the amendments were monitored at 4, 8, and 15 weeks after establishment (WAE). The GMs alone or in combination with P fertilizers contributed less than 5% to total P uptake in this soil, but total P uptake into Setaria plants in the GM treatments was three to four times that of the P fertilizers because the GMs mobilized more soil P. Also, the GMs markedly increased fertilizer P utilization in the combined treatments, from 3% to 39% with CPR, from 6-9% to 19-48% with reactive PRs, and from 6% to 37% with TSP in this soil. Both P GM and the other decomposition products were probably involved in reducing soil P-retention capacity. Mobilization of soil P was most likely the result of the action of the other decomposition products. These results demonstrate the high potential of integrating GMs and PRs for managing P in tropical soils and the importance of the soil P mobilization capacity of the organic components. Even the low-quality Imperata GM enhanced the effectiveness of the reactive APR more than fourfold.
Resumo:
The potential of solid phase microextraction (SPME) in the analysis of explosives is demonstrated. A sensitive, rapid, solventless and inexpensive method for the analysis of explosives and explosive odors from solid and liquid samples has been optimized using SPME followed by HPLC and GC/ECD. SPME involves the extraction of the organic components in debris samples into sorbent-coated silica fibers, which can be transferred directly to the injector of a gas chromatograph. SPME/HPLC requires a special desorption apparatus to elute the extracted analyte onto the column at high pressure. Results for use of GC/ECD is presented and compared to the results gathered by using HPLC analysis. The relative effects of controllable variables including fiber chemistry, adsorption and desorption temperature, extraction time, and desorption time have been optimized for various high explosives. ^
Resumo:
The potential of solid phase microextraction (SPME) in the analysis of explosives is demonstrated. A sensitive, rapid, solventless and inexpensive method for the analysis of explosives and explosive odors from solid and liquid samples has been optimized using SPME followed by HPLC and GC/ECD. SPME involves the extraction of the organic components in debris samples into sorbent-coated silica fibers, which can be transferred directly to the injector of a gas chromatograph. SPME/HPLC requires a special desorption apparatus to elute the extracted analyte onto the column at high pressure. Re suits for use of GC[ECD is presented and compared to the results gathered by using HPLC analysis. The relative effects of controllable variables including fiber chemistry, adsorption and desorption temperature, extraction time, and desorption time have been optimized for various high explosives.
Resumo:
Coccolithophores are unicellular phytoplankton that are characterized by the presence intricately formed calcite scales (coccoliths) on their surfaces. In most cases coccolith formation is an entirely intracellular process - crystal growth is confined within a Golgi-derived vesicle. A wide range of coccolith morphologies can be found amongst the different coccolithophore groups. This review discusses the cellular factors that regulate coccolith production, from the roles of organic components, endomembrane organization and cytoskeleton to the mechanisms of delivery of substrates to the calcifying compartment. New findings are also providing important information on how the delivery of substrates to the calcification site is co-ordinated with the removal of H(+) that are a bi-product of the calcification reaction. While there appear to be a number of species-specific features of the structural and biochemical components underlying coccolith formation, the fluxes of Ca(2+) and a HCO3(-) required to support coccolith formation appear to involve spatially organized recruitment of conserved transport processes.
Resumo:
Coccolithophores are unicellular phytoplankton that are characterized by the presence intricately formed calcite scales (coccoliths) on their surfaces. In most cases coccolith formation is an entirely intracellular process - crystal growth is confined within a Golgi-derived vesicle. A wide range of coccolith morphologies can be found amongst the different coccolithophore groups. This review discusses the cellular factors that regulate coccolith production, from the roles of organic components, endomembrane organization and cytoskeleton to the mechanisms of delivery of substrates to the calcifying compartment. New findings are also providing important information on how the delivery of substrates to the calcification site is co-ordinated with the removal of H(+) that are a bi-product of the calcification reaction. While there appear to be a number of species-specific features of the structural and biochemical components underlying coccolith formation, the fluxes of Ca(2+) and a HCO3(-) required to support coccolith formation appear to involve spatially organized recruitment of conserved transport processes.
Resumo:
The algae represent major producers of calcium carbonate and silica among the world's biota. Calcification involves the precipitation of CaCO3 from Ca2+ and CO32− ions. Algal calcification by coccolithophores may account for up to half of global oceanic CaCO3 production. Silicification, the transformation of silicic acid into skeletal material, occurs in a few algal groups. The abundant diatoms represent the major silicifiers, playing a key role in marine silica cycling. Fossilised diatomaceous deposits have long been exploited for building and filling materials. Biomineralisation of calcium and silicon require homeostatic ion controls that are well characterised for Ca2+ and H+ in coccolithophores. Calcification occurs in an alkalinised vesicle, while silicification requires an acidic pH. Research on silicification remains focused upon cell wall development. Initiation and development of structures that are mineralised intracellularly requires initiation and regulation by organic components within the vesicles. Low-temperature, low-pressure biogenic formation of silica and calcite has potential for biotechnological application in novel industrial processes.
Resumo:
The algae represent major producers of calcium carbonate and silica among the world's biota. Calcification involves the precipitation of CaCO3 from Ca2+ and CO32− ions. Algal calcification by coccolithophores may account for up to half of global oceanic CaCO3 production. Silicification, the transformation of silicic acid into skeletal material, occurs in a few algal groups. The abundant diatoms represent the major silicifiers, playing a key role in marine silica cycling. Fossilised diatomaceous deposits have long been exploited for building and filling materials. Biomineralisation of calcium and silicon require homeostatic ion controls that are well characterised for Ca2+ and H+ in coccolithophores. Calcification occurs in an alkalinised vesicle, while silicification requires an acidic pH. Research on silicification remains focused upon cell wall development. Initiation and development of structures that are mineralised intracellularly requires initiation and regulation by organic components within the vesicles. Low-temperature, low-pressure biogenic formation of silica and calcite has potential for biotechnological application in novel industrial processes.
Resumo:
Nos últimos anos, o processo de irrigação durante tratamento Endodôntico tem vindo a ganhar importância e a ser alvo de sucessivos estudos. Sabe-se agora que a única razão de instrumentar o sistema de canais radiculares é para se conseguir irrigar e consequentemente proceder-se à limpeza e desinfecção do dente. São vários os irrigantes utilizados durante a irrigação Endodôntica. Dentro das várias substancias químicas existentes, o Hipoclorito de Sódio, devido às suas características, é o mais utilizado mundialmente pelos Médicos Dentistas. As principais características que apresenta são o seu poder antimicrobiano assim como a sua capacidade de dissolução da matéria orgânica presente no interior dos canais radiculares. Dependentemente do caso clinico, o Médico Dentista deve saber selecionar qual o melhor irrigante a utilizar, se pode ou não utilizar o Hipoclorito de Sódio e, caso não seja possível, deve conhecer as alternativas para realizar de forma conveniente o tratamento endodôntico. É importante conhecerem-se os riscos e possíveis acidentes que podem ocorrer durante o manuseamento do Hipoclorito de Sódio e, caso o Médico Dentista se depare com uma situação destas, deve saber como actuar de forma eficaz.
Resumo:
Natural nanoclays are of great interest particularly for the production of polymer-based nanocomposites. In this work, kaolinite clays from two natural deposits in the State of the Rio Grande do Norte and Paraiba were purified with thermal treatment and chemical treatments, and characterized. Front to the gotten data, had been proposals methodologies for elimination or reduction of coarse particle texts, oxide of iron and organic substance. These methodologies had consisted of the combination of operations with thermal treatments, carried through in electric oven, and acid chemical attacks with and hydrogen peroxide. The Analyzers Thermogravimetric was used to examine the thermal stability of the nanoclays. The analysis indicated weight losses at temperatures under 110 ºC and over the temperature range of 350 to 550 ºC. Based on the thermal analysis data, the samples were submitted to a thermal treatment at 500 °C, for 8 h, to remove organic components. The X-ray diffraction patterns indicated that thermal treatment under 500 °C affect the basic structure of kaolinite. The BET surface area measurements ranged from 32 to 38 m2/g for clay samples with thermal treatment and from 36 to 53 m2/g for chemically treated samples. Thus, although the thermal treatment increased the surface area, through the removal of organic components, the effect was not significant and chemical treatment is more efficient, not affect the basic structure of kaolinite, to improve particle dispersion. SEM analysis confirms that the clay is agglomerated forming micron-size particles
Resumo:
The resistance of aluminum and their alloys, to the corrosion phenomenon, in aqueous solutions, is a result of the oxide layer formed. However, the corrosion process in the aluminum alloy is associated with the presence a second phase of particles or the presence of chloride ions which promote the disruption of the oxide layer located producing the corrosion process. On the other hand, the term water produced is used to describe the water after the separation of the oil and gas in API separators. The volumes of produced water arrive around 5 more times to the volume of oil produced. The greatest feature of the water is the presence of numerous pollutants. Due to the increased volume of waste around the world in the current decade, the outcome and the effect of the discharge of produced water on the environment has recently become an important issue of environmental concern where numerous treatments are aimed at reducing these contaminants before disposal. Then, this study aims to investigate the electrochemical corrosion behavior of aluminum alloy 6060 in presence of water produced and the influence of organic components as well as chloride ions, by using the electrochemical techniques of linear polarization. The modification of the passive layer and the likely breakpoints were observed by atomic force microscopy (AFM). In the pit formation potential around -0.4 to -0.8 V/EAg/AgCl was observed that the diffusion of chloride ions occurs via the layer formed with the probable formation of pits. Whereas, at temperatures above 65 °C, it was observed that the range of potential for thepit formation was -0.4 to -0.5 V/EAg/AgCl. In all reactions, the concentration of Al(OH)3 in the form of a gel was observed