33 resultados para orexin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep-wake disturbances are frequent in patients with Parkinson's disease, but prospective controlled electrophysiological studies of sleep in those patients are surprisingly sparse, and the pathophysiology of sleep-wake disturbances in Parkinson's disease remains largely elusive. In particular, the impact of impaired dopaminergic and hypocretin (orexin) signalling on sleep and wakefulness in Parkinson's disease is still unknown. We performed a prospective, controlled electrophysiological study in patients with early and advanced Parkinson's disease, e.g. in subjects with presumably different levels of dopamine and hypocretin cell loss. We compared sleep laboratory tests and cerebrospinal fluid levels with hypocretin-deficient patients with narcolepsy with cataplexy, and with matched controls. Nocturnal sleep efficiency was most decreased in advanced Parkinson patients, and still lower in early Parkinson patients than in narcolepsy subjects. Excessive daytime sleepiness was most severe in narcolepsy patients. In Parkinson patients, objective sleepiness correlated with decrease of cerebrospinal fluid hypocretin levels, and repeated hypocretin measurements in two Parkinson patients revealed a decrease of levels over years. This suggests that dopamine and hypocretin deficiency differentially affect sleep and wakefulness in Parkinson's disease. Poorer sleep quality is linked to dopamine deficiency and other disease-related factors. Despite hypocretin cell loss in Parkinson's disease being only partial, disturbed hypocretin signalling is likely to contribute to excessive daytime sleepiness in Parkinson patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sleep-wake disorder narcolepsy with cataplexy is associated with the loss of hypocretin-(orexin-) producing neurons in the lateral hypothalamus. Several studies have reported abnormal cerebral activation in patients with narcolepsy with cataplexy. It remains unclear, however, whether these functional changes are related to structural alterations, particularly at the cortical level. To quantify structural brain changes associated with narcolepsy with cataplexy, we used high-resolution T1-weighted magnetic resonance imaging (MRI) in 12 patients compared with 12 healthy participants matched for age and gender. Subcortical and regional cortical volumes were measured using a method unbiased by non-linear registration. Further whole-brain analyses were conducted, measuring cortical characteristics, such as cortical thickness and gyrification, at thousands of points across each hemisphere using validated algorithms. Statistical analyses accounted for an effect of age and gender. We observed decreased cortical volume in the left paracentral lobule and increased cortical volume in the left caudal part of the middle frontal gyrus in narcoleptic patients compared with controls. Cortical thickness in prefrontal areas was inversely correlated with the severity of narcolepsy. Further, we observed several clusters of cortical thinning in patients with childhood or adolescent onset of narcolepsy compared with patients with adult onset of the disease. Our results suggest that specific anatomical changes may differentiate subgroups of narcolepsy patients with different clinical profiles (such as varying symptom severity or different age at onset). Future studies with larger groups of sleepy patients are required to assess whether distinct patterns of anatomical changes may distinguish narcolepsy from non-hypocretin-deficient hypersomnia disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin) deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip). Three loci located outside the Human Leukocyte Antigen (HLA) region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@), variants in two additional narcolepsy loci, Cathepsin H (CTSH) and Tumor necrosis factor (ligand) superfamily member 4 (TNFSF4, also called OX40L), attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease.