110 resultados para orchids
Resumo:
There is a great demand for simpler and less costly laboratory techniques and for more accessible procedures for orchid breeders who do not have the necessary theoretical basis to use the traditional seed and clone production methods of orchids in vitro. The aim of this study was to assess the use of sodium hypochlorite (NaClO) as a decontaminant in the process of inoculating adult orchid explants of Arundina bambusifolia and Epidendrum ibaguenses. Solutions of NaClO (1.200, 2.400, 3.600, 4.800 and 6.000 mg L-1 - equivalent to 50, 100, 150, 200 and 250 mL L-1 of commercial bleach - CB) were sprayed on the explants (1.0 mL) and the culture medium (GB5), in the presence or absence of activated charcoal (2 g L-1). The explants used were nodal segments of field-grown adult plants. The procedures for inoculating the explants were conducted outside the laminar flow chamber (LFC), except for the control treatment (autoclaved medium and explant inoculation inside the LFC). The best results for fresh weight yield, height and number of shoots were obtained using NaClO in solution at 1.200 mg L-1 (equivalent to 50 mL L-1 commercial bleach) with activated charcoal in the culture medium. Fresh weight figures were 1.10 g/jar for Arundina bambusifolia and 0.16 g/jar for Epidendrum ibaguenses. Spraying the NaClO solutions controls the contamination of the culture medium already inoculated with the explants.
Resumo:
Natural ventilation system facilitates gaseous exchanges in in vitro plants promoting changes in the leaf tissue, which can be evaluated through the leaf anatomy, and it allows a cultivation closer to the photoautrophic micropropagation. The objective of this work was to evaluate the effects on in vitro growth and on the leaf anatomy of Cattleya walkeriana grown in natural and conventional ventilation system with different concentrations of sucrose (0; 15; 30 and 45 L-1) combined with different cultivation systems (conventional micropropagation and natural ventilation system). The culture medium was composed of MS salts, solidified with 7 g L-1 of agar and pH adjusted to 5.8. Forty milliliters of culture medium were distributed in 250 mL flasks, autoclaved at 120 ºC for 20 minutes. The greater plant growth, as well as the greater thickness of the mesophyll was observed with the use of 20 g L-1 sucrose in natural ventilation system. Plants grown in natural ventilation system showed a thicker leaf mesophyll, which is directly related to photoautotrophic crops. The natural ventilation system induced more elliptical stomata and probably more functional formats.
Resumo:
The long-lived flowers of orchids increase the chances of pollination and thus the reproductive success of the species. However, a question arises: does the efficiency of pollination, expressed by fruit set, vary with the flower age? The objective of this study was to verify whether the flower age of Corymborkis flava(Sw.) Kuntze affects pollination efficiency. The following hypotheses were tested: 1) the fruit set of older flowers is lower than that of younger ones; 2) morphological observations (perianth and stigmatic area), stigma receptivity test by using a solution of hydrogen peroxide and hand-pollination tests are equally effective in defining the period of stigmatic receptivity. Flowers were found to be receptive from the first to the fourth day of anthesis. Fruit set of older flowers (third and fourth day) was lower than that of younger flowers. Morphological observations, the stigma receptivity test and hand-pollinations were equally effective in defining the period of stigmatic receptivity. However, to evaluate the maximum degree of stigma receptivity of orchid species with long-lived flowers, we recommend hand-pollinations, beyond the period of receptivity.
Resumo:
1) The first part deals with the different processes which may complicate Mendelian segregation and which may be classified into three groups, according to BRIEGER (1937b) : a) Instability of genes, b) Abnormal segregation due to distur- bances during the meiotic divisions, c) obscured segregation, after a perfectly normal meiosis, caused by elimination or during the gonophase (gametophyte in higher plants), or during zygophase (sporophyte). Without entering into detail, it is emphasized that all the above mentioned complications in the segregation of some genes may be caused by the action of other genes. Thus in maize, the instability of the Al factor is observed only when the gene dt is presente in the homozygous conditions (RHOADES 1938). In another case, still under observation in Piracicaba, an instability is observed in Mirabilis with regard to two pairs of alleles both controlling flower color. Several cases are known, especially in corn, where recessive genes, when homozigous, affect the course of meiosis, causing asynapsis (asyndesis) (BEADLE AND MC CLINTOCK 1928, BEADLE 1930), sticky chromosomes (BEADLE 1932), supermunmerary divisions (BEADLE 1931). The most extreme case of an obscured segregatiou is represented by the action of the S factors in self stetrile plants. An additional proof of EAST AND MANGELSDORF (1925) genetic formula of self sterility has been contributed by the studies on Jinked factors in Nicotina (BRIEGER AND MANGELSDORF (1926) and Antirrhinum (BRIEGER 1930, 1935), In cases of a incomplete competition and selection between pollen tubes, studies of linked indicator-genes are indispensable in the genetic analysis, since it is impossible to analyse the factors for gametophyte competition by direct aproach. 2) The flower structure of corn is explained, and stated that the particularites of floral biology make maize an excellent object for the study of gametophyte factors. Since only one pollen tube per ovule may accomplish fertilization, the competition is always extremely strong, as compared with other species possessing multi-ovulate ovaries. The lenght of the silk permitts the study of pollen tube competitions over a varying distance. Finally the genetic analysis of grains characters (endosperm and aleoron) simpliflen the experimental work considerably, by allowing the accumulation of large numbers for statistical treatment. 3) The four methods for analyzing the naturing of pollen tube competition are discussed, following BRIEGER (1930). Of these the first three are: a) polinization with a small number of pollen grains, b) polinization at different times and c) cut- ting the style after the faster tubes have passe dand before the slower tubes have reached the point where the stigma will be cut. d) The fourth method, alteration of the distatice over which competition takes place, has been applied largely in corn. The basic conceptions underlying this process, are illustrated in Fig. 3. While BRINK (1925) and MANGELSDORF (1929) applied pollen at different levels on the silks, the remaining authors (JONES, 1922, MANGELSDORF 1929, BRIEGER, at al. 1938) have used a different process. The pollen was applied as usual, after removing the main part of the silks, but the ears were divided transversally into halves or quarters before counting. The experiments showed generally an increase in the intensity of competition when there was increase of the distance over which they had to travel. Only MANGELSDORF found an interesting exception. When the distance became extreme, the initially slower tubes seemed to become finally the faster ones. 4) Methods of genetic and statistical analysis are discussed, following chiefly BRIEGER (1937a and 1937b). A formula is given to determine the intensity of ellimination in three point experiments. 5) The few facts are cited which give some indication about the physiological mechanism of gametophyte competition. They are four in number a) the growth rate depends-only on the action of gametophyte factors; b) there is an interaction between the conductive tissue of the stigma or style and the pollen tubes, mainly in self-sterile plants; c) after self-pollination necrosis starts in the tissue of the stigma, in some orchids after F. MÜLLER (1867); d) in pollon mixtures there is an inhibitory interaction between two types of pollen and the female tissue; Gossypium according to BALLS (1911), KEARNEY 1923, 1928, KEARNEY AND HARRISON (1924). A more complete discussion is found in BRIEGER 1930). 6) A list of the gametophyte factors so far localized in corn is given. CHROMOSOME IV Ga 1 : MANGELSDORF AND JONES (1925), EMERSON 1934). Ga 4 : BRIEGER (1945b). Sp 1 : MANGELSDORF (1931), SINGLETON AND MANGELSDORF (1940), BRIEGER (1945a). CHROMOSOME V Ga 2 : BRIEGER (1937a). CHROMOSOME VI BRIEGER, TIDBURY AND TSENG (1938) found indications of a gametophyte factor altering the segregation of yellow endosperm y1. CHROMOSOME IX Ga 3 : BRIEGER, TIDBURY AND TSENG (1938). While the competition in these six cases is essentially determined by one pair of factors, the degree of elimination may be variable, as shown for Ga2 (BRIEGER, 1937), for Ga4 (BRIEGER 1945a) and for Spl (SINGLETON AND MANGELSDORF 1940, BRIEGER 1945b). The action of a gametophyte factor altering the segregation of waxy (perhaps Ga3) is increased by the presence of the sul factor which thus acts as a modifier (BRINCK AND BURNHAM 1927). A polyfactorial case of gametophyte competition has been found by JONES (1922) and analysed by DEMEREC (1929) in rice pop corn which rejects the pollen tubes of other types of corn. Preference for selfing or for brothers-sister mating and partial elimination of other pollen tubes has been described by BRIEGER (1936). 7) HARLAND'S (1943) very ingenious idea is discussed to use pollen tube factors in applied genetics in order to build up an obstacle to natural crossing as a consequence of the rapid pollen tube growth after selfing. Unfortunately, HARLAND could not obtain the experimental proof of the praticability of his idea, during his experiments on selection for minor modifiers for pollen tube grouth in cotton. In maize it should be possible to employ gametophyte factors to build up lines with preference for crossing, though the method should hardly be of any practical advantage.
Resumo:
v.31:no.12(1968)
Resumo:
n.s. no.17(1986)
Resumo:
Aims Food-deceptive pollination, in which plants do not offer any food reward to their pollinators, is common within the Orchidaceae. As food-deceptive orchids are poorer competitors for pollinator visitation than rewarding orchids, their occurrence in a given habitat may be more constrained than that of rewarding orchids. In particular, the success of deceptive orchids strongly relies on several biotic factors such as interactions with co-flowering rewarding species and pollinators, which may vary with altitude and over time. Our study compares generalized food-deceptive (i.e. excluding sexually deceptive) and rewarding orchids to test whether (i) deceptive orchids flower earlier compared to their rewarding counterparts and whether (ii) the relative occurrence of deceptive orchids decreases with increasing altitude. Methods To compare the flowering phenology of rewarding and deceptive orchids, we analysed data compiled from the literature at the species level over the occidental Palaearctic area. Since flowering phenology can be constrained by the latitudinal distribution of the species and by their phylogenetic relationships, we accounted for these factors in our analysis. To compare the altitudinal distribution of rewarding and deceptive orchids, we used field observations made over the entire Swiss territory and over two Swiss mountain ranges. Important Findings We found that deceptive orchid species start flowering earlier than rewarding orchids do, which is in accordance with the hypotheses of exploitation of naive pollinators and/or avoidance of competition with rewarding co-occurring species. Also, the relative frequency of deceptive orchids decreases with altitude, suggesting that deception may be less profitable at high compared to low altitude.
Resumo:
El projecte ha assolit la majoria d’objectius, ajustats a la reducció d'una quarta part de l'import concedit: 1) caracteritzar la transformació del paisatge agro-forestal i urbà a dos municipis de la vall del Congost, La Garriga i Figaró-Montmany, reconstruint amb SIG els mapes d'ús del sòl de 1854, 1949, 1956 i 2005, obtenint per intersecció de cobertes les matrius dels canvis d'ús; i 2) avaluar amb l’índex de connectivitat ecològica l'impacte ambiental d'aquells canvis des del punt de vista de la biodiversitat i la resiliència del paisatges, amb un especial èmfasi en la reforestació induïda per l'abandonament rural i la pèrdua de paisatges en mosaic, en un àmbit més gran pel període 1956-1993-2005. Aquests resultats han permès preparar varis articles per publicar en co-autoría a revistes com Landscape History, Environment and History o Landscape and Urban Planning. Ja és a punt de poder-se lliurar el primer amb el títol de "Looking backwards into a Mediterranean edge environment: Landscape changes and ecological connectivity in El Congost Valley (province of Barcelona, Catalonia) 1850-2005", incloent dos objectius esmentats a la memòria: identificar les principals forces motores d'aquells canvis en el paisatge relacionant els usos del sòl amb les formes d'ordenació del territori, caracteritzar-ne les forces rectores econòmico-socials i el paper jugat per la protecció del Parc Natural del Montseny i els Cingles de Bertí. Els resultats també permetran abordar en el futur altres aspectes, com per exemple estimar el potencial energètic de la biomassa local tot cercant que el seu aprofitament generi sinèrgies territorials positives per a l'ecologia del paisatge amb la recuperació d’una ramaderia extensiva i una agricultura ecològica que facin possible la restauració dels paisatges en mosaic. L'estudi ha pogut incorporar un aspecte inicialment no previst, el cens d'orquídies mediterrànies a Figaró-Montmany elaborat pel naturalista Paul Wilcox
Resumo:
Male bees of the tribe Euglossini collect volatile chemicals secreted by orchids using dense patches of hair on the front tarsi. After collecting chemicals, the bee hovers while transferring these fragrances to invaginations on the hind tibiae. The fragrance collection and hovering behaviours are repeated multiple times. Here I report preliminary field observations on the length of fragrance collection and hovering phases in bees of the Eulaema meriana (Oliver, 1789) mimicry complex visiting the orchid Catasetum discolor in Kavanayén,Venezuela. I observed that in extended visits with many cycles of fragrance collection and hovering, the length of each collection phase gradually increased, while the length of hovering phase was static. This suggests either that chemicals secreted by orchids are in limited supply or that efficiency of fragrance collection drops.
Resumo:
In the best cultivation methods of orchids, in particular of the genus Phalaenopsis, liming is a common practice. The objective of this study was to evaluate the influence of lime rates (0.0; 1.0; 2.0; 3.0; 4.0; and 5.0 g dm-3 of substrate) applied to the cultivation substrate (xaxim) on the growth of Epidendrum ibaguense seedlings. In a greenhouse, 1-L plastic pots filled with 0.8 dm³ of xaxim were irrigated such that no leachate was lost during the experiment. N, P, K, Ca, Mg, S, Fe, Zn, B, and Mn contents in roots, stems and leaves were measured. Leachate was collected by applying a sufficient water volume to obtain 25 mL from each pot. Fourteen days after lime application of 3 g dm-3, the pH of the collected leachate reached values above 7 and a value of 6.29 with the highest lime rate at the end of the experiment. The lime rate did not influence plant height, probably due to a Zn deficiency at high pH levels and a Ca deficiency in the control. Nevertheless, there was a large increase in leaf production, for number as well as for dry matter mass. There was no statistical difference between treatments in root dry matter production. Maximum dry matter production was obtained at a lime rate of 4.09 g dm-3. Zinc concentrations diminished linearly with increasing lime rates; the concentrations in all treatments were below the levels suggested as adequate in the literature (25-200 mg kg-1). Nutrient concentrations in leaves indicated deficiency of N, S, and B at the highest lime rates (4.0 and 5.0 g dm-3), and of Ca in the treatment without liming.
Resumo:
Rhizoctonia-like fungi are the main mycorrhizal fungi in orchid roots. Morphological characterization and analysis of conserved sequences of genomic DNA are frequently employed in the identification and study of fungi diversity. However, phytopathogenic Rhizoctonia-like fungi have been reliably and accurately characterized and identified through the examination of the fatty acid composition. To evaluate the efficacy of fatty acid composition in characterizing and identifying Rhizoctonia-like mycorrhizal fungi in orchids, three Epulorhiza spp. mycorrhizal fungi from Epidendrum secundum, two unidentified fungi isolated from Epidendrum denticulatum, and a phytopathogenic fungus, Ceratorhiza sp. AGC, were grouped based on the profile of their fatty acids, which was assessed by the Euclidian and Mahalanobis distances and the UPGMA method. Dendrograms distinguished the phytopathogenical isolate of Ceratorhiza sp. AGC from the mycorrhizal fungi studied. The symbionts of E. secundum were grouped into two clades, one containing Epulorhiza sp.1 isolates and the other the Epulorhiza sp.2 isolate. The similarity between the symbionts of E. denticulatum and Epulorhiza spp. fungi suggests that symbionts found in E. denticulatum may be identified as Epulorhiza. These results were corroborated by the analysis of the rDNA ITS region. The dendrogram constructed based on the Mahalanobis distance differentiated the clades most clearly. Fatty acid composition analysis proved to be a useful tool for characterizing and identifying Rhizoctonia-like mycorrhizal fungi.
Resumo:
Considering the performance of CAM epiphytes under high levels of radiation or in shaded environments, with growth rate proportional to light intensity, the objective of this work was to evaluate the effects of long-term light stress on the growth of a Brazilian epiphytic orchid, Cattleya forbesii Lindl. X Laelia tenebrosa Rolfe. Two groups of plants were used in the first experiment, one under 90% (@ 1,650 µmol.m-2.s-1) of Photosynthetically Active Radiation (PAR) and the other maintained under 22.5% (@ 400 µmol.m-2.s-1). In the second experiment the diffusive resistance, transpiration rate and fluorescence levels were monitored for plants that were under 22.5% of PAR, under 90% and plants transferred from 22.5 to 90%. Our results show that light intensity interfered with growth and development of this orchid. Data on the changes in pseudobulb volume throughout the time course of growth suggest that water and reserves stored in the back shoots are translocated to the current shoot. Regarding stomatal resistance, plants under 22.5% of PAR reached a largest stomatal aperture during the night, whereas those under 90% only after dawn. After transfer from 22.5% PAR to 90% PAR the ratio of Fv/Fm decreased from approximately 0.8 to 0.7. This suggests the limitation of photoprotection mechanisms in the leaf and the results observed after the transfer of plants from 22.5% to 90% reinforce the possibility that a photoinhibition is reflected in a decrease in growth rate.
Resumo:
The variation in nitrogen use strategies and photosynthetic pathways among vascular epiphyte families was addressed in a white-sand vegetation in the Brazilian Central Amazon. Foliar nitrogen and carbon concentrations and their isotopic composition (δ15N and δ13C, respectively) were measured in epiphytes (Araceae, Bromeliaceae and Orchidaceae) and their host trees. The host tree Aldina heterophylla had higher foliar N concentration and lower C:N ratio (2.1 ± 0.06% and 23.6 ± 0.8) than its dwellers. Tree foliar δ15N differed only from that of the orchids. Comparing the epiphyte families, the aroids had the highest foliar N concentration and lowest C:N ratios (1.4 ± 0.1% and 34.9 ± 4.2, respectively). The orchids had more negative foliar δ15N values (-3.5 ± 0.2) than the aroids (-1.9 ± 0.7) and the bromeliads (-1.1 ± 0.6). Within each family, aroid and orchid taxa differed in relation to foliar N concentrations and C:N ratios, whereas no internal variation was detected within bromeliads. The differences in foliar δ15N observed herein seem to be related to the differential reliance on the available N sources for epiphytes, as well as to the microhabitat quality within the canopy. In relation to epiphyte foliar δ13C, the majority of epiphytes use the water-conserving CAM-pathway (δ13C values around -17), commonly associated with plants that live under limited and intermittent water supply. Only the aroids and one orchid taxon indicated the use of C3-pathway (δ13C values around -30).
Resumo:
Floral nectar spurs are widely considered to influence pollinator behaviour in orchids. Spurs of 21 orchid species selected from within four molecularly circumscribed clades of subtribe Orchidinae (based on Platanthera s.l., Gymnadenia-Dactylorhiza s.l., Anacamptis s.l., Orchis s.s.) were examined under light and scanning electron microscopes in order to estimate correlations between nectar production (categorized as absent, trace, reservoir), interior epidermal papillae (categorized as absent, short, medium, long) and epidermal cell striations (categorized as apparently absent, weak, moderate, strong). Closely related congeneric species scored similarly, but more divergent species showed less evidence of phylogenetic constraints. Nectar secretion was negatively correlated with striations and positively correlated with papillae, which were especially frequent and large in species producing substantial reservoirs of nectar. We speculate that the primary function of the papillae is conserving energy through nectar resorption and explain the presence of large papillae in a minority of deceit-pollinated species by arguing that the papillae improve pollination because they are a tactile expectation of pollinating insects. In contrast, the prominence of striations may be a 'spandrel', simply reflecting the thickness of the overlying cuticle. Developmentally, the spur is an invagination of the labellum; it is primarily vascularized by a single 'U'-shaped primary strand, with smaller strands present in some species. Several suggestions are made for developing further, more targeted research programmes. (C) 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160, 369-387.
Resumo:
While only about 1-200 species are used intensively in commercial floriculture (e.g. carnations, chrysanthemums, gerbera, narcissus, orchids, tulips, lilies, roses, pansies and violas, saintpaulias, etc.) and 4-500 as house plants, several thousand species of herbs, shrubs and trees are traded commercially by nurseries and garden centres as ornamentals or amenity species. Most of these have been introduced from the wild with little selection or breeding. In Europe alone, 12 000 species are found in cultivation in general garden collections (i.e. excluding specialist collections and botanic gardens). In addition, specialist collections (often very large) of many other species and/or cultivars of groups such as orchids, bromeliads, cacti and succulents, primulas, rhododendrons, conifers and cycads are maintained in several centres such as botanic gardens and specialist nurseries, as are 'national collections' of cultivated species and cultivars in some countries. Specialist growers, both professional and amateur, also maintain collections of plants for cultivation, including, increasingly, native plants. The trade in ornamental and amenity horticulture cannot be fully estimated but runs into many billions of dollars annually and there is considerable potential for further development and the introduction of many new species into the trade. Despite this, most of the collections are ad hoc and no co-ordinated efforts have been made to ensure that adequate germplasm samples of these species are maintained for conservation purposes and few of them are represented at all adequately in seed banks. Few countries have paid much attention to germplasm needs of ornamentals and the Ornamental Plant Germplasm Center in conjunction with the USDA National Plant Germplasm System at The Ohio State University is an exception. Generally there is a serious gap in national and international germplasm strategies, which have tended to focus primarily on food plants and some forage and industrial crops. Adequate arrangements need to be put in place to ensure the long- and medium-term conservation of representative samples of the genetic diversity of ornamental species. The problems of achieving this will be discussed. In addition, a policy for the conservation of old cultivars or 'heritage' varieties of ornamentals needs to be formulated. The considerable potential for introduction of new ornamental species needs to be assessed. Consideration needs to be given to setting up a co-ordinating structure with overall responsibility for the conservation of germplasm of ornamental and amenity plants.