972 resultados para optical transfer function


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous SiC tandem heterostructures are used to filter a specific band, in the visible range. Experimental and simulated results are compared to validate the use of SiC multilayered structures in applications where gain compensation is needed or to attenuate unwanted wavelengths. Spectral response data acquired under different frequencies, optical wavelength control and side irradiations are analyzed. Transfer function characteristics are discussed. Color pulsed communication channels are transmitted together and the output signal analyzed under different background conditions. Results show that under controlled wavelength backgrounds, the device sensitivity is enhanced in a precise wavelength range and quenched in the others, tuning or suppressing a specific band. Depending on the background wavelength and irradiation side, the device acts either as a long-, a short-, or a band-rejection pass filter. An optoelectronic model supports the experimental results and gives insight on the physics of the device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilayered heterostructures based on embedded a-Si:H and a-SiC:H p-i-n filters are analyzed from differential voltage design perspective using short- and long-pass filters. The transfer functions characteristics are presented. A numerical simulation is presented to explain the filtering properties of the photonic devices. Several monochromatic pulsed lights, separately (input channels) or in a polychromatic mixture (multiplexed signal) at different bit rates, illuminated the device. Steady-state optical bias is superimposed from the front and the back side. Results show that depending on the wavelength of the external background and impinging side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. Particular attention is given to the amplification coefficient weights, which allow to take into account the wavelength background effects when a band or frequency needs to be filtered or the gate switch, in which optical active filter gates are used to select and filter input signals to specific output ports in wavelength division multiplexing (WDM) communication systems. This nonlinearity provides the possibility for selective removal or addition of wavelengths. A truth table of an encoder that performs 8-to-1 MUX function exemplifies the optoelectronic conversion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel method to generate ultrawideband (UWB) doublets is proposed and experimentally demonstrated, which is based on exploiting the cross-phase modulation in a semiconductor optical amplifier (SOA). The key component is an integrated SOA Mach-Zehnder interferometer pumped with an optical carrier modulated by a Gaussian pulse. The transfer function of the nonlinear conversion process leads to the generation of UWB doublet pulses by tuning the SOA currents to different values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, a novel method to generate an ultra-wideband (UWB) doublet using the cross-phase modulation (XPM) effect is proposed and experimentally demonstrated. The main component of the submitted architecture is a SOA-Mach-Zehnder interferometer (MZI) pumped with a modulated Gaussian pulse. Maximum and minimum conversion points are analyzed through the systems transfer function in order to determinate the most effective operation stage. By tuning different values for the SOAs currents, it is possible to identify a conversion step in which the input pulse is enough large to saturate the SOAMZI, leading to the generation of a UWB doublet pulse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose and experimentally demonstrate a novel technique to generate ultrawideband (UWB) doublet pulses by exploiting the cross-phase modulation (XPM) in a semiconductor optical amplifier (SOA). The key component in the proposed system consists on an integrated SOA Mach-Zehnder interferometer (MZI) pumped with a Gaussian pulse modulated optical carrier. The transfer function of the nonlinear conversion process leads to the generation of UWB doublet pulses through the control of the biasing point of the SOA-MZI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the feasibility of simultaneous suppressing of the amplification noise and nonlinearity, representing the most fundamental limiting factors in modern optical communication. To accomplish this task we developed a general design optimisation technique, based on concepts of noise and nonlinearity management. We demonstrate the immense efficiency of the novel approach by applying it to a design optimisation of transmission lines with periodic dispersion compensation using Raman and hybrid Raman-EDFA amplification. Moreover, we showed, using nonlinearity management considerations, that the optimal performance in high bit-rate dispersion managed fibre systems with hybrid amplification is achieved for a certain amplifier spacing – which is different from commonly known optimal noise performance corresponding to fully distributed amplification. Required for an accurate estimation of the bit error rate, the complete knowledge of signal statistics is crucial for modern transmission links with strong inherent nonlinearity. Therefore, we implemented the advanced multicanonical Monte Carlo (MMC) method, acknowledged for its efficiency in estimating distribution tails. We have accurately computed acknowledged for its efficiency in estimating distribution tails. We have accurately computed marginal probability density functions for soliton parameters, by numerical modelling of Fokker-Plank equation applying the MMC simulation technique. Moreover, applying a powerful MMC method we have studied the BER penalty caused by deviations from the optimal decision level in systems employing in-line 2R optical regeneration. We have demonstrated that in such systems the analytical linear approximation that makes a better fit in the central part of the regenerator nonlinear transfer function produces more accurate approximation of the BER and BER penalty. We present a statistical analysis of RZ-DPSK optical signal at direct detection receiver with Mach-Zehnder interferometer demodulation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging system that is capable of producing high resolution in-vivo images. OCT is approved for use in clinical trials in Japan, USA and Europe. For OCT to be used effectively in a clinical diagnosis, a method of standardisation is required to assess the performance across different systems. This standardisation can be implemented using highly accurate and reproducible artefacts for calibration at both installation and throughout the lifetime of a system. Femtosecond lasers can write highly reproducible and highly localised micro-structured calibration artefacts within a transparent media. We report on the fabrication of high quality OCT calibration artefacts in fused silica using a femtosecond laser. The calibration artefacts were written in fused silica due to its high purity and ability to withstand high energy femtosecond pulses. An Amplitude Systemes s-Pulse Yb:YAG femtosecond laser with an operating wavelength of 1026 nm was used to inscribe three dimensional patterns within the highly optically transmissive substrate. Four unique artefacts have been designed to measure a wide variety of parameters, including the points spread function (PSF), modulation transfer function (MTF), sensitivity, distortion and resolution - key parameters which define the performance of the OCT. The calibration artefacts have been characterised using an optical microscope and tested on a swept source OCT. The results demonstrate that the femtosecond laser inscribed artefacts have the potential of quantitatively and qualitatively validating the performance of any OCT system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the intrinsic signals in response to grating stimuli in order to determine whether the light-evoked intrinsic signals of the retina are due to changes in the photoreceptor activities induced by the image projected on to the retina or are due to neural activities of the inner retina. The retinas of the left eye of 12 cats under general anesthesia were examined by a functional imaging fundus camera. Near infrared light was used to monitor the reflectance changes (RCs) of the retina. Vertical grating were used to stimulate the retina at 4 Hz. The spatial frequencies of the gratings were 0.05, 0.11, 0.22, 0.43, 0.86, 1.73, and 3.46 cycles/degree (cpd). Ten images were averaged and used to analyze the RCs to obtain the peak value (PV) of a two dimensional fast Fourier transfer of the RCs. The wavefront aberrations (WA) were measured with a compact wavefront aberrometer and the spatial modulation transfer function (MTF) of the eye was calculated. The retinal reflectance image had a grating pattern. The PV of the spatial sensitivity curve was highest at low spatial frequencies (0.05 and 0.11 cpd), and the sensitivity decreased steeply with an increase in the spatial frequency. RCs were not detectable at 3.46 cpd. The MTF decreased gradually with increases in the spatial frequencies and was 0.68 at 3.46 cpd. The reflectance pattern of the retinal intrinsic signal elicited by grating stimuli of different spatial frequencies was different from that of the MTF. This suggests that the intrinsic signal represents not only the response of the photoreceptors but also other neuronal or vascular changes in the retina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the linear and nonlinear optical transfer characteristics of a multi-resonance device consisting of two optical ring resonators coupled one to the other and to an optical waveguide. The propagation effects displayed by the device are compared with those of a sequence of fundamental ring resonators coupled to a waveguide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One major drawback of coherent optical orthogonal frequency-division multiplexing (CO-OFDM) that hitherto remains unsolved is its vulnerability to nonlinear fiber effects due to its high peak-to-average power ratio. Several digital signal processing techniques have been investigated for the compensation of fiber nonlinearities, e.g., digital back-propagation, nonlinear pre- and post-compensation and nonlinear equalizers (NLEs) based on the inverse Volterra-series transfer function (IVSTF). Alternatively, nonlinearities can be mitigated using nonlinear decision classifiers such as artificial neural networks (ANNs) based on a multilayer perceptron. In this paper, ANN-NLE is presented for a 16QAM CO-OFDM system. The capability of the proposed approach to compensate the fiber nonlinearities is numerically demonstrated for up to 100-Gb/s and over 1000km and compared to the benchmark IVSTF-NLE. Results show that in terms of Q-factor, for 100-Gb/s at 1000km of transmission, ANN-NLE outperforms linear equalization and IVSTF-NLE by 3.2dB and 1dB, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel versatile digital signal processing (DSP)-based equalizer using support vector machine regression (SVR) is proposed for 16-quadrature amplitude modulated (16-QAM) coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and experimentally compared to traditional DSP-based deterministic fiber-induced nonlinearity equalizers (NLEs), namely the full-field digital back-propagation (DBP) and the inverse Volterra series transfer function-based NLE (V-NLE). For a 40 Gb/s 16-QAM CO-OFDM at 2000 km, SVR-NLE extends the optimum launched optical power (LOP) by 4 dB compared to V-NLE by means of reduction of fiber nonlinearity. In comparison to full-field DBP at a LOP of 6 dBm, SVR-NLE outperforms by ∼1 dB in Q-factor. In addition, SVR-NLE is the most computational efficient DSP-NLE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel low-complexity artificial neural network (ANN)-based nonlinear equalizer (NLE) for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and compare it with the recent inverse Volterra-series transfer function (IVSTF)-based NLE over up to 1000 km of uncompensated links. Demonstration of ANN-NLE at 80-Gb/s CO-OFDM using 16-quadrature amplitude modulation reveals a Q-factor improvement after 1000-km transmission of 3 and 1 dB with respect to the linear equalization and IVSTF-NLE, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The extension of Adachi's model with a Gaussian-like broadening function, in place of Lorentzian, is used to model the optical dielectric function of the alloy AlxGa1-xAs. Gaussian-like broadening is accomplished by replacing the damping constant in the Lorentzian line shape with a frequency dependent expression. In this way, the comparative simplicity of the analytic formulas of the model is preserved, while the accuracy becomes comparable to that of more intricate models, and/or models with significantly more parameters. The employed model accurately describes the optical dielectric function in the spectral range from 1.5 to 6.0 eV within the entire alloy composition range. The relative rms error obtained for the refractive index is below 2.2% for all compositions. (C) 1999 American Institute of Physics. [S0021-8979(99)00512-5].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) aims to disentangle the description of brain processes by exploiting the advantages of each technique. Most studies in this field focus on exploring the relationships between fMRI signals and the power spectrum at some specific frequency bands (alpha, beta, etc.). On the other hand, brain mapping of EEG signals (e.g., interictal spikes in epileptic patients) usually assumes an haemodynamic response function for a parametric analysis applying the GLM, as a rough approximation. The integration of the information provided by the high spatial resolution of MR images and the high temporal resolution of EEG may be improved by referencing them by transfer functions, which allows the identification of neural driven areas without strong assumptions about haemodynamic response shapes or brain haemodynamic`s homogeneity. The difference on sampling rate is the first obstacle for a full integration of EEG and fMRI information. Moreover, a parametric specification of a function representing the commonalities of both signals is not established. In this study, we introduce a new data-driven method for estimating the transfer function from EEG signal to fMRI signal at EEG sampling rate. This approach avoids EEG subsampling to fMRI time resolution and naturally provides a test for EEG predictive power over BOLD signal fluctuations, in a well-established statistical framework. We illustrate this concept in resting state (eyes closed) and visual simultaneous fMRI-EEG experiments. The results point out that it is possible to predict the BOLD fluctuations in occipital cortex by using EEG measurements. (C) 2010 Elsevier Inc. All rights reserved.