921 resultados para optical limiting
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The excited-state dynamics of free-base meso-tetrakis(sulfonatophenyl) porphyrin J-aggregates obtained by the Z-scan technique in femto- and picosecond time scales, along with UV-Vis spectroscopy and flash photolysis is reported. Besides obtaining the S-1 state lifetime, the discrimination between internal conversion and intersystem crossing nonradiative processes from that state was also possible, and their rates and respective quantum yields were found. The aggregates present reverse saturable absorption at 532 nm for both singlet and triplet excited states. The data shown is important for several applications such as optical limiting, photodynamic therapy and others. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Green energy and Green technology are the most of the quoted terms in the context of modern science and technology. Technology which is close to nature is the necessity of the modern world which is haunted by global warming and climatic alterations. Proper utilization of solar energy is one of the goals of Green Energy Movement. The present thesis deals with the work carried out in the eld of nanotechnology and its possible use in various applications (employing natural dyes) like solar cells. Unlike arti cial dyes, the natural dyes are available, easy to prepare, low in cost, non-toxic, environmentally friendly and fully biodegradable. Looking to the 21st century, the nano/micro sciences will be a chief contributor to scienti c and technological developments. As nanotechnology progresses and complex nanosystems are fabricated, a growing impetus is being given to the development of multi-functional and size-dependent materials. The control of the morphology, from the nano to the micrometer scales, associated with the incorporation of several functionalities can yield entirely new smart hybrid materials. They are special class of materials which provide a new method for the improvement of the environmental stability of the material with interesting optical properties and opening a land of opportunities for applications in the eld of photonics. Zinc oxide (ZnO) is one such multipurpose material that has been explored for applications in sensing, environmental monitoring, and bio-medical systems and communications technology. Understanding the growth mechanism and tailoring their morphology is essential for the use of ZnO crystals as nano/micro electromechanical systems and also as building blocks of other nanosystems.
Resumo:
Tellurite glasses are photonic materials of special interest to the branch of optoelectronic and communication, due to its important optical properties such as high refractive index, broad IR transmittance, low phonon energy etc. Tellurite glasses are solutions to the search of potential candidates for nonlinear optical devices. Low phonon energy makes it an efficient host for dopant ions like rare earths, allowing a better environment for radiative transitions. The dopant ions maintain majority of their individual properties in the glass matrix. Tellurites are less toxic than chalcogenides, more chemically and thermally stable which makes them a highly suitable fiber material for nonlinear applications in the midinfrared and they are of increased research interest in applications like laser, amplifier, sensor etc. Low melting point and glass transition temperature helps tellurite glass preparation easier than other glass families.In order to probe into the versatility of tellurite glasses in optoelectronic industry; we have synthesized and undertaken various optical studies on tellurite glasses. We have proved that the highly nonlinear tellurite glasses are suitable candidates in optical limiting, with comparatively lower optical limiting threshold. Tuning the optical properties of glasses is an important factor in the optoelectronic research. We have found that thermal poling is an efficient mechanism in tuning the optical properties of these materials. Another important nonlinear phenomenon found in zinc tellurite glasses is their ability to switch from reverse saturable absorption to saturable absorption in the presence of lanthanide ions. The proposed thesis to be submitted will have seven chapters.
Resumo:
Aims: Angiographic evidence of edge dissections has been associated with a risk of early stent thrombosis. Optical coherence tomography (OCT) is a high-resolution technology detecting a greater number of edge dissections -particularly non-flow-limiting- compared to angiography. Their natural history and clinical implications remain unclear. The objectives of the present study were to assess the morphology, healing response, and clinical outcomes of OCT-detected edge dissections using serial OCT imaging at baseline and at one year following drug-eluting stent (DES) implantation. Methods and results: Edge dissections were defined as disruptions of the luminal surface in the 5 mm segments proximal and distal to the stent, and categorised as flaps, cavities, double-lumen dissections or fissures. Qualitative and quantitative OCT analyses were performed every 0.5 mm at baseline and one year, and clinical outcomes were assessed. Sixty-three lesions (57 patients) were studied with OCT at baseline and one-year follow-up. Twenty-two non-flow-limiting edge dissections in 21 lesions (20 patients) were identified by OCT; only two (9%) were angiographically visible. Flaps were found in 96% of cases. The median longitudinal dissection length was 2.9 mm (interquartile range [IQR] 1.6-4.2 mm), whereas the circumferential and axial extensions amounted to 1.2 mm (IQR: 0.9-1.7 mm) and 0.6 mm (IQR: 0.4-0.7 mm), respectively. Dissections extended into the media and adventitia in seven (33%) and four (20%) cases, respectively. Eighteen (82%) OCT-detected edge dissections were also evaluated with intravascular ultrasound which identified nine (50%) of these OCT-detected dissections. No stent thrombosis or target lesion revascularisation occurred up to one year. At follow-up, 20 (90%) edge dissections were completely healed on OCT. The two cases exhibiting persistent dissection had the longest flaps (2.81 mm and 2.42 mm) at baseline. Conclusions: OCT-detected edge dissections which are angiographically silent in the majority of cases are not associated with acute stent thrombosis or restenosis up to one-year follow-up.
Resumo:
PURPOSE: To describe the clinical and histologic features of a particular form of macular epiretinal membrane. METHODS: The charts of all patients operated for macular epiretinal membrane by a single surgeon (E.H.B.) between June 2001 and January 2005 were retrospectively reviewed. Patients with macular epiretinal membrane associated with tearing and folding of the internal limiting membrane (ILM) were identified and the following parameters were recorded when available: age, gender, best-corrected visual acuity before and after vitrectomy; optical coherence tomography; pre-, intra-, and postoperative macular status; intraoperative staining by indocyanine green; histology. RESULTS: Twenty-three of 268 eyes (8.6%) with macular epiretinal membrane were associated with tearing and folding of the ILM, forming a whitish prominent band on the surface of the retina. The mean age of the patients was 68.6 years with a significant female predominance (78.3%). The vitreous was completely detached in 21 eyes. After surgical peeling, the mean visual gain was 3.2 Early Treatment Diabetic Retinopathy Study lines. No recurrence was observed. CONCLUSION: Tearing and folding of the ILM was associated with macular epiretinal membranes in 8.6% of cases. The ILM was probably torn during posterior hyaloid detachment, but the pathogenesis has not been clearly elucidated. The surgeon should begin to peel the macular epiretinal membrane by grasping the folded ILM to ensure complete removal of the ILM together with the epiretinal membrane. The postoperative visual prognosis was good
Resumo:
Full contour monolithic zirconia restorations have shown an increased popularity in the dental field over the recent years, owing to its mechanical and acceptable optical properties. However, many features of the restoration are yet to be researched and supported by clinical studies to confirm its place among the other indirect restorative materials This series of in vitro studies aimed at evaluating and comparing the optical and mechanical properties, light cure irradiance, and cement polymerization of multiple monolithic zirconia material at variable thicknesses, environments, treatments, and stabilization. Five different monolithic zirconia materials, four of which were partially stabilized and one fully stabilized were investigated. The optical properties in terms of surface gloss, translucency parameter, and contrast ratio were determined via a reflection spectrophotometer at variable thicknesses, coloring, sintering method, and after immersion in an acidic environment. Light cure irradiance and radiant exposure were quantified through the specimens at variable thicknesses and the degree of conversion of two dual-cure cements was determined via Fourier Transform Infrared spectroscopy. Bi-axial flexural strength was evaluated to compare between the partially and fully stabilized zirconia prepared using different coloring and sintering methods. Surface characterization was performed using a scanning electron microscope and a spinning disk confocal microscope. The surface gloss and translucency of the zirconia investigated were brand and thickness dependent with the translucency values decreasing as the thickness increased. Staining decreased the translucency of the zirconia and enhanced surface gloss as well as the flexural strength of the fully stabilized zirconia but had no effect on partially stabilized zirconia. Immersion in a corrosive acid increased surface gloss and decreased the translucency of some zirconia brands. Zirconia thickness was inversely related to the amount of light irradiance, radiant exposure, and degree of monomer conversion. Type of sintering furnace had no effect on the optical and mechanical properties of zirconia. Monolithic zirconia maybe classified as a semi-translucent material that is well influenced by the thickness, limiting its use in the esthetic zones. Conventional acid-base reaction, autopolymerizing and dual-cure cements are recommended for its cementation. Its desirable mechanical properties give it a high potential as a restoration for posterior teeth. However, close monitoring with controlled clinical studies must be determined before any definite clinical recommendations can be drawn.
Resumo:
In this article we present the spectral and nonlinear optical properties of ZnO–TiO2 nanocomposites prepared by colloidal chemical synthesis. Emission peaks of ZnO–TiO2 nanocomposites change from 340 nm to 385 nm almost in proportion to changes in Eg. The nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour. The nonlinear refractive index and the nonlinear absorption increase with increasing TiO2 volume fraction at 532 nm and can be attributed to the enhancement of exciton oscillator strength. ZnO–TiO2 is a potential nanocomposite material for the tunable light emission and for the development of nonlinear optical devices with a relatively small limiting threshold
Resumo:
In this article we present the nonlinear optical properties of ZnO–TiO2–SiO2 nanocomposites prepared by colloidal chemical synthesis. Nonlinear optical response of these samples is studied using nanosecond laser pulses at an off-resonance wavelength. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and TiO2. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour. The nonlinear refractive index and the nonlinear absorption increases with increasing ZnO volume fraction. The observed nonlinear absorption is explained by two photon absorption followed by weak free carrier absorption and nonlinear scattering. ZnO–TiO2–SiO2 is a potential nanocomposite material for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
In this Letter we present the spectral and nonlinear optical properties of ZnO–Ag nanocomposites prepared by colloidal chemical synthesis. Obvious enhancement of ultraviolet (UV) emission of the samples is observed and the strongest UV emission is over three times than that of pure ZnO. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour which increases with increasing Ag volume fraction. The observed nonlinear absorption is explained through two photon absorption followed by free carrier absorption. ZnO–Ag is a potential nanocomposite material for the UV light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
We present the spectral and nonlinear optical properties of ZnO-SiO2 nanocomposites prepared by colloidal chemical synthesis. Obvious enhancement of ultraviolet (UV) emission of the samples is observed, and the strongest UV emission of a typical ZnO-SiO2 nanocomposite is over three times stronger than that of pure ZnO. The nonlinearity of the silica colloid is low, and its nonlinear response can be improved by making composites with ZnO. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absorption and nonlinear scattering. The nonlinear refractive index and the nonlinear absorption increase with increasing ZnO volume fraction and can be attributed to the enhancement of exciton oscillator strength. ZnO-SiO2 is a potential nanocomposite material for the UV light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
We report an optical limiter based on ferrofluids which has a very high shelf life and remarkable thermal stability, which are important requirements for sustainable use with intense lasers. The colloidal suspensions contain nanosized particles of approximately 80 Å diameter, with a number density of the order of 1022 /m3. The nonlinear optical transmission of the samples is studied using nanosecond and femtosecond laser pulses. Excited state absorption phenomena contribute to enhanced limiting in the nanosecond excitation regime. An advantageous feature of ferrofluids in terms of device applications is that their optical properties are controllable by an external magnetic field.
Resumo:
Absorbance detection in capillary electrophoresis (CE), offers an excellent mass sensitivity, but poor concentration detection limits owing to very small injection volumes (normally I to 10 nL). This aspect can be a limiting factor in the applicability of CE/UV to detect species at trace levels, particularly pesticide residues. In the present work, the optical path length of an on-column detection cell was increased through a proper connection of the column (75 mu m i.d.) to a capillary detection cell of 180 mu m optical path length in order to improve detectability. It is shown that the cell with an extended optical path length results in a significant gain in terms of signal to noise ratio. The effect of the increase in the optical path length has been evaluated for six pesticides, namely, carbendazim, thiabendazole, imazalil, procymidone triadimefon, and prochloraz. The resulting optical enhancement of the detection cell provided detection limits of ca. 0.3 mu g/mL for the studied compounds, thus enabling the residue analysis by CE/UV.
Resumo:
PURPOSE. To study changes in lamina cribrosa position and prelaminar tissue thickness (PTT) after surgical IOP reduction in glaucoma patients. METHODS. Twenty-two patients (mean age, 71.4 years) were imaged with spectral domain optical coherence tomography (SD-OCT; 24 radial B-scans centered on the optic nerve head [ONH]) before trabeculectomy or tube shunt implantation. Follow up images were acquired 1 week, 1 month, 3 months, and 6 months postsurgery. Bruch's membrane opening (BMO), the internal limiting membrane (ILM) and the anterior laminar surface (ALS) were segmented in each radial scan with custom software. Surfaces were fitted to the ILM and ALS with the extracted three-dimesional coordinates. PTT was the distance between the ILM and ALS, perpendicular to a BMO reference plane. Serial postsurgical laminar displacement (LD), relative to the BMO reference plane, and changes in PTT were measured. Positive values indicated anterior LD. RESULTS. Mean (SD) presurgery IOP was 18.1 (6.5) mm Hg, and reduced by 4.7 (5.5), 2.4 (7.7), 7.0 (6.2), and 6.8 (7.5) mm Hg at 1 week, 1 month, 3 months, and 6 months postsurgery, respectively. At the four postsurgery time points, there was significant anterior LD (1.8 [9.5], -1.1 [8.9], 8.8 [20.2], and 17.9 [25.8] mu m) and PTT increase (1.7 [13.3], 2.4 [11.9], 17.4 [13.7], and 13.9 [18.6] mu m). LD was greater in ONHs with larger BMO area (P = 0.01) and deeper ALS (P = 0.04); however, PTT was not associated with any of the tested independent variables. CONCLUSIONS. Both anterior LD and thickening of prelaminar tissue occur after surgical IOP reduction in patients with glaucoma. (Invest Ophthalmol Vis Sci. 2012;53:5819-5826) DOI:10.1167/iovs.12-9924
Resumo:
PURPOSE. We previously demonstrated that most eyes have regionally variable extensions of Bruch's membrane (BM) inside the clinically identified disc margin (DM) that are clinically and photographically invisible. We studied the impact of these findings on DM- and BM opening (BMO)-derived neuroretinal rim parameters. METHODS. Disc stereo-photography and spectral domain optical coherence tomography (SD-OCT, 24 radial B-scans centered on the optic nerve head) were performed on 30 glaucoma patients and 10 age-matched controls. Photographs were colocalized to SD-OCT data such that the DM and BMO could be visualized in each B-scan. Three parameters were computed: (1) DM-horizontal rim width (HRW), the distance between the DM and internal limiting membrane (ILM) along the DM reference plane; (2) BMO-HRW, the distance between BMO and ILM along the BMO reference plane; and (3) BMO-minimum rim width (MRW), the minimum distance between BMO and ILM. Rank-order correlations of sectors ranked by rim width and spatial concordance measured as angular distances between equivalently ranked sectors were derived. RESULTS. The average DM position was external to BMO in all quadrants, except inferotemporally. There were significant sectoral differences among all three rim parameters. DM- HRW and BMO-HRW sector ranks were better correlated (median rho = 0.84) than DM- HRW and BMO-MRW (median rho = 0.55), or BMO-HRW and BMO-MRW (median rho = 0.60) ranks. Sectors with the narrowest BMO-MRW were infrequently the same as those with the narrowest DM-HRW or BMO-HRW. CONCLUSIONS. BMO-MRW quantifies the neuroretinal rim from a true anatomical outer border and accounts for its variable trajectory at the point of measurement. (Invest Ophthalmol Vis Sci. 2012;53:1852-1860) DOI:10.1167/iovs.11-9309